Towards an atmospheric-waves coupled operational system at DWD

<u>Mikhail Dobrynin*,</u> Daniel Reinert, Florian Prill, Günther Zängl, Oliver Sievers, Thomas Bruns

German Weather Service (DWD) Hamburg & Offenbach am Main, Germany

* mikhail.dobrynin@dwd.de

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ICON modelling framework

ICON

Icosahedral Nonhydrostatic modeling framework

German Weather Service (DWD) Karlsruhe Institute of Technology (KIT) Max Planck Institute for Meteorology (MPI-M) German Climate Computing Center (DKRZ) Institute of Oceanography, Universität Hamburg

ICON-NWP

Numerical weather prediction model

Operational weather forecast (since Jan 2015)

ICON-ESM Earth system model

Climate projections, seamless seasonal to decadal prediction (work in progress)

ICON (Icosahedral Nonhydrostatic) Model

Schematic depiction of the icosahedral grid structure of ICON

Example of an ICON grid with a refinement area

In the current operational version, the global ICON grid has 2,949,120 triangles, corresponding to an average area of 173 km² and thus to an effective mesh size of about **13 km**.

Current wave forecast system

Boundary cond.

European seas (EWAM) 66°N and 10.5°W 0.05° x 0.1° (5 km) 30 frequencies, 36 directions 120 hours, hourly

ICON / ICON-EU

German coast (CWAM-HBM) ~53°N and ~6°W 30" x 50" (~900m) 30 frequencies, 36 directions 78 hours , hourly

Dobrynin et al., 2019, International Workshop on Waves, Storm Surges and Coastal Hazards, 10-15 November 2019, Melbourne, Australia

緣

New forecast system

Innovation Programme for Applied Researches and Developments (IAFE)

Two way ICON-WAM coupling.

IAFE-Project 2WICWAM (03.2019 - 03.2023)

Dobrynin et al., 2019, International Workshop on Waves, Storm Surges and Coastal Hazards, 10-15 November 2019, Melbourne, Australia

7

Dobrynin et al., 2019, International Workshop on Waves, Storm Surges and Coastal Hazards, 10-15 November 2019, Melbourne, Australia

8

ICON-ESM*

* land and ocean biogeochemistry models are not shown here

Dobrynin et al., 2019, International Workshop on Waves, Storm Surges and Coastal Hazards, 10-15 November 2019, Melbourne, Australia

ICON-NWP-WAVES

Dobrynin et al., 2019, International Workshop on Waves, Storm Surges and Coastal Hazards, 10-15 November 2019, Melbourne, Australia

or ICON-ESM + WAVES

Simulation of wave spectrum

$\frac{\partial E}{\partial t} + \nabla (c_g E) = S = S_{in} + S_{dis} + S_{nl}$

Propagation of energy

Wave physics

Simulation of wave spectrum

Wave spectrum as a collection of energy bins "tracers" that can be advected

Existing ICON advection schemes can be used

Dobrynin et al., 2019, International Workshop on Waves, Storm Surges and Coastal Hazards, 10-15 November 2019, Melbourne, Australia

ICON-waves: proof of concept

Finite volume discretisation Flux Form Semi-Langrangian (FFSL) scheme*

First advection tests:

- Deep ocean
- Initial JONSWAP spectrum
- Constant wind in two regions
- No non-linear effects

Lauritzen, P. H., C. Erath, and R. Mittal, 2011a: On simplifying 'incremental remap'-based transport schemes. *J. Comput. Phys.*, 230, 7957– 7963.

Lauritzen, P. H., R. D. Nair, and P. A. Ullrich, 2010: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubedsphere grid. *J. Comput. Phys.*, 229, 1401–1424.

Komen, G. J., S. Hasselmann, and K Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. *Journal of physical oceanography*,14.8, 1271-1285.

Dobrynin et al., 2019, International Workshop on Waves, Storm Surges and Coastal Hazards, 10-15 November 2019, Melbourne, Australia

ICON-waves: proof of concept

Miura, H., 2007: An upwind-biased conservative advection scheme for spherical hexagonal-pentagonal grids. Mon. Weather Rev., 135, 4038–4044.

Dobrynin et al., 2019, International Workshop on Waves, Storm Surges and Coastal Hazards, 10-15 November 2019, Melbourne, Australia

In a few months...

- Analyse advection tests comparing to similar WAM setup
- Complete wave physics
- Switch to coupled mode with real forcing

Thank you for your attention

Towards an atmospheric-waves coupled operational system at DWD

<u>Mikhail Dobrynin,</u>

Daniel Reinert, Florian Prill, Günther Zängl, Oliver Sievers, Thomas Bruns

German Weather Service (DWD) Hamburg & Offenbach am Main, Germany

