Towards coupling coastal ocean models to inland hydrology at NOAA National Ocean Service

Saeed Moghimi¹, Edward Myers¹, Sergey Vinogradov¹, Lei Shi¹, Jaime Calzada¹, Yuji Funakoshi¹, Maria Contreras-Vargas², William Pringle², Joannes Westerink², Kendra Dresback³, Christine Szpilka ³, Randall Kolar ³, Joseph Zhang⁴, Fei Ye⁴, Andre Van der Westhuysen⁵, Zizang Yang¹, Ali Abdolali⁵, Roham Bakhtyar⁵, Panagiotis Velissariou⁵, Kazungu Maitaria⁵, Beheen Trimble⁵, Trey Flowers⁵, Patrick Burke¹, Cecelia DeLuca⁶, Nicole Kurkowski⁵, Hendrik Tolman⁵, Derrick Snowden¹, Julia Powell¹, Shachak Peeri¹.

¹ NOAA/NOS
² University of Notre Dame
³ University of Oklahoma
⁴ Virginia Institute of Marine Science
⁵ NOAA/NWS
⁶ ESMF/ NUOPC Development Team

Content

- Coastal ocean modeling framework
- Unified Forecast System
- NOS' Coastal Ocean Models and UFS
- Some of the on-going projects
- Future works

Coastal ocean modeling framework

3

ND ATMOSPL

NOAA

NOS' Long-Term Strategy

The long-term approach regarding NOS coastal modeling capability is to *move towards implementing full 3D coastal modeling linked to the inland hydrology models, on a national scale*.

We have identified that *direct coupling of the coastal circulation model to the inland hydrology model is the long-term approach for NOS'* national scale coastal circulation models.

Boundary conditions from NOS' operational models are always available to National Water Center or other NOAA partners to support their inland flood modeling efforts.

Unified Forecast System (UFS)

National Unified Operational Prediction Capability (NUOPC) Layer

NUOPC Generic Components

Driver	Harness that initializes components according to an <i>Initialization Phase Definition</i> , and drives their Run() methods according to a customizable run sequence.					
Connector	Implements field matching based on standard metadata and executes simple transforms (e.g. grid remapping, redistribution). It can be plugged into a generic Driver component to connect Models and/or Mediators.					
Model	Wraps model code so it is suitable to be plugged into a generic Driver component.					
Mediator	Wraps custom coupling code (flux calculations, averaging, etc.) so it is suitable to be plugged into a generic Driver component.					

NUOPC Layer interoperability rules are implemented using a set of generic components that represent the major structural pieces needed to build coupled models.

Theurich et al. 2016

ESMF/NUOPC enabled models (Selected)

CST	Coastal ocean	ADCRIC, ROMS, FVCOM						
ATM	atmosphere	FV3 (Finite-Volume Cubed-Sphere Dynamical Core), GSM (Global Spectral Model), NMMB (Non-hydrostatic multiscale model on the B-grid) WRF						
OCN	ocean	MOM5 and MOM6 (Modular Ocean Model)						
WAV	wave	WWIII (WAVEWATCH III)						
ICE	sea ice	CICE (Los Alamos Sea Ice Model), KISS (Keeping Ice's Simplicity)						
HYD	hydrology	WRF-Hydro (Weather Research and Forecast Model Hydrology), NWM						
LND	land	LIS (Land Information System)						
Validating In development Plan to develop								

NOAA National Ocean Service

NEMS (NUOPC/ESMF) Applications

Application	ATM	OCN	WAV	ICE	HYD	LND	AER	IPM	CST
COASTAL Act	HWRF (data)		WWIII		NWM				ADCIRC
NWI-ROMS					NWM				ROMS
NWI-FVCOM			WWIII		NWM				FVCOM
OTT-ROMS	WRF								ROMS
OTT-Alaska		RTOFS (data)	WWIII	CICE					ADCIRC

COASTAL Act application

NOAA's Environmental Modeling System (NEMS)

0.0

-0.2

-0.4

Moghimi et al, 2019;

Moghimi et al, in submission

(a)

35

(a)

(b)

35

30

30

HWRF+WW3 to ADCIRC for Sandy, 2012

HWRF+WW3+ADCIRC for Ike, 2008

Moghimi et al, in submission

HWRF+WW3 to ADCIRC for Ike, 2008

IKE Fully coupled - Only tide

Dynamical effects on maximum water level

Moghimi et al, in submission

HWRF+WW3 to ADCIRC for Ike, 2008

Moghimi et al, in submission

Comparing ADCIRC and NWM (inland hydrology) coverage

Inland hydrology and coastal ocean models coupling

Discharges from NWM

Lateral fluxes from NWM

Exploring Creek-to-Ocean 3D modeling SCHISM and NWM

In collaboration with: Virginia Institute of Marine Science

SCHISM model domain

Use a large domain for storm surge
Resolve Gulf Stream to get baroclinic response right during storms

- Un-smoothed bathymetry
- USGS high-resolution DEM (NAVD88) (flat datum)
- Explicitly representing NWM segments in the horizontal mesh: 759K nodes and 1,478K elements
- Grid resolution: 2~7 km in the ocean; 50-200 m in the main channel of DB; down to ~20m in small streams
- Terrain following vertical mesh with varying number of layers (LSC²)
- 3rd order transport scheme based on WENO
- Ocean boundary forced by HYCOM
- Hot start from HYCOM (with approximated salinity/temperature field inside the Delaware Bay)
- Atmospheric forcing from ECMWF (ERA)
- freshwater inflow inside Delaware Bay from NWM
- Simulation period: 2011-7-27 ~ 2011-9-10 (50 days)
- Time step: 150 seconds
- Baseline (3D baroclinic): 80x Real Time on 1440 cores of Pleiades (NASA)
- The 2D model runs approximately 57 times faster than the baseline and can be efficiently conducted using as few as 40 cores.
- Coupled with National Water Model (NWM) at 10 m above MSL
- □ Seamless creek-to-ocean capability

Coupling to NWM

- The intersection points between NWM Segments and the SCHISM land boundary are determined.
- NWM flows are directly imposed based on the streamflow of the intersecting segments
- One-way coupling at the moment, from NWM to SCHISM

Ye et al, in press; Ocean Modelling

Mesh Generation for DE Bay

- The ocean model mesh overlaps with NWM's coverage of streams
- NWM streams are explicitly represented in the SCHISM mesh
- The pluvial processes below the 10-m contour are directly handled by SCHISM.

Baroclinic model setup

Terrain following vertical mesh with varying number of layers (LSC²):

19 levels on average, 1 vertical layer if depth is shallower than 0.5m

Over 30% of the mesh cells are 2D and are dry most of the time Transect view (from the shallow areas in the Delaware Bay watershed to the deep ocean)

Ye et al, in press; Ocean Modelling

Waves contribution in the maximum elevation (Irene, 2011)

Zhang et al; Submitted; Ocean dynamics

Compound freshwater and coastal flooding effect (Irene, 2011)

Zhang et al; Submitted; Ocean dynamics

Compound freshwater and coastal flooding effect (Irene, 2011)

Zhang et al; Submitted; Ocean dynamics

Future works

- Working with models developers and community to enable NOS' operational models for absorbing inland hydrology variables (i.e. discharges and locally generated run-off)
- ADCIRC
 - Adaptive data driven mesh generation
 - Testing strategies for freshwater variables
 - Updating ADCIRC NUOPC/ESMF interface
- ROMS
 - Testing NUOPC/ESMF model interface in NOAA NEMS environment
 - Implementation of flexible freshwater source terms
 - Considering open-channel type bottom roughness for rivers
- FVCOM
 - Developing NUOPC/ESMF model interface in NOAA NEMS environment
 - Testing flexible freshwater source terms for seamless NWM and FVCOM coupling

Questions!?

NOAA Office of Coast Survey has been the nation's nautical chart-maker since President Thomas Jefferson requested a hydrographical survey in 1807.

NOAA National Ocean Service Office of Coast Survey Coast Survey Development Laboratory Coastal Marine Modeling Branch

& Redford

Hydraulic jump

Time-series on 3 sample points and Trenton (Locations shown in (b))

Zhang et al; Submitted; Ocean dynamics

Horizontal view

(a)

Hydr

40.24

40.22

Lat 40.20 Elev (m) 0.2

-0.1

-0.7