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• recent studies by Smit, Janssen and Herbers (2013, 2015) demonstrate the 

relevance of interaction of waves with variable bed topography resulting in 

coherent interferences

introduction and motivation

• in this talk we will present cases in which 

inhomogeneous statistics of waves over    

non-uniform currents become important



• sediment transport

• wave driven currents

• extreme events in energetic focal regions

• measurements of small-scale currents 

Berman, G., 2011. Longshore Sediment Transport, Cape 

Cod, Massachusetts. Woods Hole Sea Grant Bulletin 46

The Science Education through Earth Observation for High 

Schools (SEOS) Project (www.seos-project.eu)

National Oceanic and Atmospheric Administration (NOAA) 

(https://oceanservice.noaa.gov/facts/roguewaves.html)

relevance and applications



• 3rd generation wave models to describe evolution of wind-generated waves in 

oceanic and coastal environment using stochastic description of the wave field 

(WAM, WW III and SWAN)

• assuming Gaussian and quasi-homogeneous statistics then wave field defined       

by the variance only → density spectrum of wave energy (or wave action)

• assuming slowly varying medium then the radiative transport equation

(or the action balance equation) can be derived

background − current approach
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• directional components are statistically independent
– at deep water the wave field evolves slowly on scales of O(10 km – 100 km)

• in shallower water, however, wave components interact with medium
– bathymetry and currents can vary rapidly in coastal regions, e.g. O(100 m − 1 km)

• they may become correlated and form interference pattern resulting in         

rapid variations of the mean statistics (in the near field)
– effect more pronounced with narrow-band waves (e.g. swells)

– interference patterns also occur in the presence of headlands, harbor entrances and coastal inlets …

– … and around breakwaters, barriers etc. (diffraction) but also wave transformation over rip currents

– refraction effects can be significant as well(!)

• also affect the far field statistics due to wave focusing and defocusing

background − limitations



• allowing for inhomogeneous statistics to be generated due to interaction of the 

wave field with non-uniform currents

• this study extends the results of Smit, Janssen and Herbers (2013, 2015) for 

cases of wave propagation over rapidly varying bathymetry

• implementation in the Quasi-Coherent model (QCM, Smit et al., 2015)

• two examples to demonstrate the capabilities of the extended model 

✓ swell field propagation over a narrow tidal jet (rip current)

✓ swell waves that interact with an isolated vortex ring

objectives



• starting point is the action variable  representing a random and linear wave 

field over a varying medium
– assumption: zero-mean, Gaussian and quasi-stationary

– closely linked to the mean action density: <||2> = m0/

• its statistics is defined completely by the correlation function

• the Wigner distribution is derived from the Fourier transform

generalization of the action density spectrum
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• since                       , we have           (not necessarily            )

• W(k,x,t) provides a complete spectral description of the second order statistics   

of the wave field, including cross correlation contributions
– these contributions correspond to interferences and can be negative

• the Wigner distribution W(k,x,t) generalizes the concept of the action density 

spectrum N(k,x,t)

• via the equation of , the Fourier transformed equation for W(k,x,t) is

generalization of the action density spectrum (cont’d)
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evolution equation for inhomogeneous wave field

• the resulting equation is not feasible, therefore we follow the procedure of       

Smit and Janssen (2013) to carefully simplify

• introduce three scales (L is the characteristic wave length)
– medium varies on scale Lm = L/

– inhomogeneities in the wave field due to medium variations vary on scale Lw = L/

– the characteristic width of the spectrum is  (=k/k) so that the correlation length scale is Lc = L/

• further assumptions are
– the spatial variation of the interference structures is much larger than the characteristic wave length:  « 1

– both narrow-band wave field ( « 1) and broad-band wave field (  1) can be considered

• relate the correlation scale to the medium variation scale:  = Lc / Lm =  / 



significant changes in medium occur

within coherent radius of the wave field

Lm = medium variation scale Lc = correlation length scale

interpretation of 

Lc

1 (1)O 

Lm

the wave field de-correlates over

distances much shorter than medium

variations



evolution equation for inhomogeneous wave field (cont’d)

• if          and         , Taylor expansion reduces equation to lowest order to the 

radiative transport equation

• if   O(1), a truncated expansion in  is not valid, however, since (r) has 

compact support, a Fourier integral yields proper equations
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with scattering source term taking into account the statistical effects of refraction

and interferences induced by medium variations



waves over jet-like current waves over vortex ring

0 0( 10m,  1m, 20s , 15 )o

sd H T = = = =

wave-current interaction examples

0 0( 10m,  1m, 20s , 0 )o

sd H T = = = =



variance density at boundary
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example: jet-like current

Sd = 0.001 m−1

(   4 )

comparison between QCM, REF/DIF 1 and SWAN in terms of the spatial distribution of Hs

Sd = 0.005 m−1

(   1 )



example: jet-like current (Sd = 0.001 m−1)



example: jet-like current (Sd = 0.005 m−1)



example: vortex ring

dS

comparison between QCM, REF/DIF 1 and SWAN in terms of the spatial distribution of Hs

Sd = 0.001 m−1

(   4 )

Sd = 0.005 m−1

(   1 )



the validity of QCM



• extension of the QCM for problems of wave-current interaction by taking into 

account the effect of wave interferences

• the Wigner distribution W is an extension of the action density spectrum N and 

provides a complete description of the second order statistics of the wave field

• an evolution equation for W is developed and is seen as a generalization of the 

conventional action balance equation by allowing the generation and propagation 

of cross correlation contributions

• generated cross correlations can alter the mean statistics significantly for cases 

where changes in currents occur over distances smaller than the typical scale of 

the correlation length

conclusions



• two synthetic test cases of wave-current interactions are provided

• a good agreement appears between the model results of the QCM and SWAN 

model until the crossing zones

• behind the crossing zones, in contrast to SWAN, the QCM captures the 

development of interference patterns due to correlation of crossing waves

• interference effects dramatically change the distribution of the significant wave 

height, also far away from the wave focusing area

• however, by increasing the spectral directional width, the agreement between  

the QCM and SWAN model extends even beyond the crossing zones

conclusions
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