DNV·GL

Rogue wave warning based on spectral wave forecasting

2nd International Workshop on Waves, Storm Surges and Coastal Hazards Melbourne, Australia

Odin Gramstad, Elzbieta Bitner-Gregersen, Ole Johan Aarnes, Øyvind Breivik and Anne Karin Magnusson

12 November 2019

How much can we say about the wave statistics in a sea state, given information about the wave spectrum?

Datasets used in study

Subset of WAM spectra selected for simulation with HOSM

• 26 280 WAM spectra

 6200 3-hour HOSM-simulations over a spatial domain of about 2.5 x 2.5 km

Statistics from HOSM simulations

- Simulations cover very large area
 - Rogue waves ($\eta_{max} > 1.25H_s$) are observed in almost all simulations
 - Stable estimate of kurtosis
- Clear correlation between kurtosis and extreme crests

Prediction of kurtosis – parametric formulas

set set

Janssen (2017) Janssen & Janssen (2019) $\kappa_4 = 3 + \kappa_A^{bound} + \kappa_A^{dyn}$ $\kappa_4^{bound} = 9k_0^2 m_0 = 9\epsilon^2$ $\kappa_4^{dyn} = BFI^2 \times \begin{cases} J(R), & R < 1\\ -J(1/R)/R, & R > 1 \end{cases}$ $J(R) = \frac{\pi\gamma}{\sqrt{3}} (1 - \alpha\sqrt{R} + \beta R + \delta R^2)$ $BFI = \sqrt{2}\epsilon/\delta_{\omega}, \quad R = \frac{\delta_{\theta}^2}{2\mu^2}$

Prediction of kurtosis – machine learning

Prediction of kurtosis – similar sea states

- Predict kurtosis by considering existing simulations of sea states with similar spectra
- For each spectrum in test set -> Select the N most similar spectra in the training set

Validation against field data

	Tra Training set	aining set Test set	Test set Field S data	Field data Simulations timeseries
K ^{bound}	0.500	0.459	1.003	1.224
$K_4^{dyn} + K_4^{dyn}$	0.291	0.267	1.009	1.292
ακ ₄ ^{bound} (best fit)	0.331	0.286	1.006	1.331
$\beta^{bund} + \beta \kappa_4^{dyn}$ (best fit)	0.275	0.244	1.008	1.316
andom forest model 1	0.015	0.159	1.019	1.334
andom forest model 2	0.016	0.153	1.017	1.334
Most similar spectra	0.000	0.188	1.019	1.316
spec	tra			

- Very poor prediction when validated on field data
- Sampling variability of kurtosis from single-point wave records is much larger than difference in kurtosis due to sea-state differences

Point measurements – sampling variability dominates

No correlation between kurtosis from a 30minutes time-series and the "real" underlying kurtosis obtained as an average over the full space-time domain Same goes for kurtosis from two point measurement (at the same time and in nearby locationa)

Predicting increased risk of rogue waves from wave spectrum - conclusions

- Sea-state kurtosis (and hence increased risk of rogue waves) can in principle be "forecasted" from knowledge about the wave spectrum
 - Wave steepness is (not surprisingly) the most important factor
 - ...but including information such as BFI and spectral bandwidths improves prediction
 - Machine learning methods that are not restricted to simple parametrizations \rightarrow Even better predictions
- However:
 - The predictability of rogue waves/kurtosis in single-point measurements is non-existing
 - Hence, the relevance of such prediction seems to be very limited for marine structures, since sampling variability will always dominate. Unless the area of interest is quite large.
- Further work: Validate prediction of kurtosis using stereo-camera space-time measurements, where sampling variability is reduced

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

12 DNV GL © 12 November 2019

