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Interactions among Atmosphere, Ocean, & Wave

◼Ocean - Atmosphere
⚫ SST feedback to heat flux

⚫ Current feedback to 
momentum

⚫ Water flux takes rainfall into 
account

◼Atmosphere - Wave
⚫ Surface roughness

⚫ Sea spray affects water and 
heat

◼Ocean - Wave
⚫ Wave-induced current and 

turbulence (Stokes drift, 
Langmuir circulation)

⚫ Enhanced mixing due to wave 
breaking

⚫ Wave setup

⚫ Wave-induced pressure
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Explosive Cyclone (EC)

◼ An explosive cyclone is generated in the area of high baroclinicity in winter and spring. Its 
definition is that its central SLP drops over 24hPa within a day. The explosive cyclone is hard 
to predict accurately and causes sever disasters in broad areas.

◼ Marine disasters caused by ECs

⚫ Coastal facility damages (Toyama, 2008)

⚫ Downfall and stranding of vessels (Ibaraki, 2006)

◼ Main factors of the development

⚫ Large anomaly of potential vorticity in upper layer

⚫ Inflow of latent heat and vapor from ocean

⚫ Latent heat release from cloud and rain generation
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Influence of Kuroshio on explosive cyclone (Nonaka et al., 2016)
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December, 2014 (Asahi Shimbun) JMA weather map



Research Overview

◼Motivation

⚫The Atmospheric and ocean model cannot resolve ocean wave effect explicitly.

⚫The effects of ocean wave on an meso-scale phenomenon in atmosphere and ocean
are remain to be clarified for the sake of accurate weather forecast.

◼Objective
To clarify ocean wave effects on the boundary layer turbulence in both 
atmosphere and ocean and on the development of a winter explosive 
cyclone.

◼Methodology
⚫ An atmosphere-ocean-wave coupled model simulates an explosive cyclone considering 

ocean wave effects.
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Explosive Cyclone in Northwestern Atlantic in 2018 Jan

◼ In 2018 January, an explosive cyclone emerged 
in Northwestern Atlantic and developed as 
much as 949hPa in its central SLP. It caused 
enormous blizzard and damages of $11 billion.
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2018 Jan 5

NOAA GOES-16 satellite
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Mechanism of Explosive Development

◼The explosive cyclone was intensified by the latent
and sensible heat flux supplied from Gulf Stream.

◼The heat flux flowing into cold conveyor belt (CCB)
enhances the bent-back front, resulting in 
enhancement of the convective instability.
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(cited from Fig.18 in Hirata et al., 2015)
(cited from Fig.4 in Hirata et al., 2019)

Latent heating rate owing to condensation



Configuration of the Coupled Model
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WRF WAVEWATCH III CROCO

Domain 𝑙𝑜𝑛: 30°~50°, 𝑙𝑎𝑡: −88°~ − 50°

Period 2018/01/01 ~ 2018/01/10

Resolution 0.08˚ 0.08˚ 1/18˚

Time Step 30s 360s (global) 9s(2D), 360s(3D)

Grid 𝑙𝑜𝑛 501 × 𝑙𝑎𝑡 326, 60 𝑙𝑎𝑦𝑒𝑟 𝑙𝑜𝑛 536 × 𝑙𝑎𝑡 349 𝑙𝑜𝑛 729 × 𝑙𝑎𝑡 597, 45𝑙𝑎𝑦𝑒𝑟

Others
Initial/boundary: CFSR

Boundary layer: MYNN scheme

Initial/boundary: Atlantic Model

wind, ice forcing: CFSR

Initial/boundary: HYCOM

No tide, σ coordinate

WRF

WW3 CROCO

Charnock
Coefficient

Surface
Wind

Water Level, Current

Wave height, Period, Direction
Wave Drag

Surface Drag
Radiation

Heat & Water Flux

SST
Current

Coupling every 6 min Bathymetry
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Coupler:

OASIS-MCT



Configuration of Surface Physics

◼Surface Stress: 𝜏𝑡𝑜𝑡 = 𝜌𝑎𝑢∗
2 = 𝜌𝑎𝐶𝑑𝑈
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◼Surface Sensible Heat Flux:      𝐻𝑆 = −𝜌𝑎𝑐𝑝𝑢∗𝜃∗ = −𝜌𝑎𝑐𝑝𝐶ℎ𝑈 𝜃𝑎 − 𝜃𝑠

◼Surface Latent Heat Flux:         𝐻𝐿 = 𝐿𝑒𝜌𝑎𝑢∗𝑞∗ = 𝐿𝑒𝜌𝑎𝑀𝐶𝑞𝑈 𝑞𝑠 − 𝑞𝑎

◼Charnock Parameter:      𝛼 = 0.01 1 − Τ𝜏𝑤 𝜏𝑡𝑜𝑡
− Τ1 2 (Janssen 1991)

◼Surface Roughness:       𝑧0 = 𝑧0𝜈 + 𝑧𝑤 =
0.11𝜈

𝑢∗
+ 𝛼

𝑢∗
2

𝑔
=

0.11𝜈

𝑢∗
+

0.01

1− Τ𝜏𝑤 𝜏𝑡𝑜𝑡

𝑢∗
2

𝑔

◼Wave-induced Stress:    𝜏𝑤 = 𝜌𝑤 0
∞
𝜋−
𝜋
𝑓2 𝑆𝑖𝑛

𝑘

𝑘
𝑑𝜃𝑑𝑓

◼Friction Velocity: 𝑢∗𝑎 = 𝑘𝑈 ln( Τ𝑧 𝑧0) − 𝜓𝑚 Τ𝑧 𝐿 , 𝑢∗𝑤 = 𝑢∗𝑎 1 + 𝛾𝑤𝑎𝑔𝑒 1 − cos𝜙
𝜙: angle between wind − wave, 𝛾 = 0.007, 𝑤𝑎𝑔𝑒 = 𝐶𝑝/𝑢∗𝑎
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(Patton et al., 2019)

(𝑧0,𝑚𝑎𝑥 = 2.85𝑚𝑚; Davis et al. 2008)

Surface roughness reflects wave development

Friction velocity reflects misalignment of wave-wind direction



Governing Equations of CROCO (new ROMS-AGRIF)

◼ Make use of the wave-current Interactions configuration in Uchiyama et al. (2010).

◼ Stokes Drift: (𝑢𝑠𝑡 , 𝑣𝑠𝑡 , 𝑤𝑠𝑡), Vortex force: (𝑉𝑥 , 𝑉𝑦, 𝑉𝑧), Bernoulli head: 𝜙𝐵, Unpreserved force: 𝐹
Reynolds-averaged governing equations are:

Momentum:

𝜕𝑢

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢

𝜕𝑥𝑗
− 𝑓𝑣 = −

𝜕 𝜙 + 𝜙𝐵

𝜕𝑥
−

𝜕

𝜕𝑥𝑗
𝑢𝑗
′𝑢 − 𝜈

𝜕𝑢

𝜕𝑥𝑗
+ 𝑉𝑥 + 𝐹𝑥 + 𝐹𝑥

𝑤

𝜕𝑣

𝜕𝑡
+ 𝑢𝑗

𝜕𝑣

𝜕𝑥𝑗
+ 𝑓𝑢 = −

𝜕 𝜙 + 𝜙𝐵

𝜕𝑦
−

𝜕

𝜕𝑥𝑗
𝑢𝑗
′𝑣 − 𝜈

𝜕𝑣

𝜕𝑥𝑗
+ 𝑉𝑦 + 𝐹𝑦 + 𝐹𝑦

𝑤

Scalor:
𝜕𝑐

𝜕𝑡
+ 𝑢𝑗

𝜕𝑐

𝜕𝑥𝑗
= −𝑢𝑗

𝑠𝑡 𝜕𝑐

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
𝑢𝑗
′𝑐 − 𝜈𝑐

𝜕𝑐

𝜕𝑥𝑗
+ 𝐹𝑐 (𝑇, 𝑆)

Pressure:
𝜕𝜙

𝜕𝑧
+
𝑔𝜌

𝜌0
= −

𝜕𝜙𝐵

𝜕𝑧
+ 𝑉𝑧

Continuity:
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0
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𝐅𝐰 = breaking + roller acceleration + bottom drag𝑉𝑥, 𝑉𝑦 = −ො𝐳 × 𝐮𝐬𝐭 ො𝐳 ∙ ∇⊥ × 𝐮 + 𝑓 − 𝑤𝑠𝑡
𝜕𝐮

𝜕𝑧
,

𝑉𝑧 = 𝐮𝐬𝐭 ∙
𝜕𝐮

𝜕𝑧𝜙𝐵 =
1

4

𝜎𝐴2

𝑘sinh2 𝑘𝐷
න
−ℎ

𝑧 𝜕 𝐤 ∙ 𝐮 2

𝜕𝜁2
sinh 2𝑘 𝑧 − 𝜁 𝑑𝜁

ℎ: batymetry, 𝐷 = ℎ + 𝜂, 𝑘:wave number
𝐴:wave amplitude, 𝜎:wave freqency



Turbulence Parameterization: k-kl model (MY25)

◼ In the CROCO model, several GSL (generic length scale) approaches are provided (Umlauf
and Burchard, 2003): e.g., 𝑘 − 𝑘𝑙, 𝑘 − 𝜀, 𝑘 − 𝜔 model. They are two-equation models which 
diagnose two turbulence values explicitly. 

◼ Here, Mellor–Yamada level 2.5 (MY25, 𝒌 − 𝒌𝒍) scheme is selected, which is originally 
proposed in Mellor and Yamada (1974).

◼ For turbulent kinetic energy: 𝑬 =
1

2
𝑢′2 + 𝑣′2 +𝑤′2 and turbulent length scale: 𝒍,

𝜕𝐸

𝜕𝑡
+ 𝑢𝑗

𝜕𝐸

𝜕𝑥𝑗
=

𝜕

𝜕𝑧
𝐾𝑄

𝜕𝐸

𝜕𝑧
+ 𝑃 + 𝐵 − 𝜀

𝜕(𝐸𝑙)

𝜕𝑡
+ 𝑢𝑗

𝜕(𝐸𝑙)

𝜕𝑥𝑗
=

𝜕

𝜕𝑧
𝐾𝑄

𝜕(𝐸𝑙)

𝜕𝑧
+ 𝑙 𝑐1𝑃 + 𝑐3𝐵 − 𝑐2𝜀𝐹𝑤𝑎𝑙𝑙

shear production: 𝑃 = −𝑢′𝑤′
𝜕𝑢

𝜕𝑧
− 𝑣′𝑤′

𝜕𝑣

𝜕𝑧
, buoyancy production: 𝐵 = −

𝑔

𝜌0
𝜌′𝑤′, dissipation: 𝜀

𝐾𝑄 = 2𝑘𝑙𝑆𝑞; 𝑆𝑞 = 0.2; 𝑐1 = 0.9, 𝑐3 = 0.9, 𝑐2 = 0.5

◼ Parameter used here is proposed by Umlauf et al. (2003) and Canuto et al. (2001).
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Wave-induced Mixing Parameter in MY25 scheme

◼Babanin (2011) suggested non-breaking wave-induced mixing formula, like:

shear production: 𝑃 → 𝑃 + 𝑃𝑤 = −𝑢′𝑤′
𝜕𝑢

𝜕𝑧
− 𝑣′𝑤′

𝜕𝑣

𝜕𝑧
+ 𝑏𝑘

𝜔𝐻𝑠

2
𝑒𝑘𝑧

3

𝑏 = 0.0014,𝜔: angular frequency, 𝐻𝑠: significant wave height, 𝑘: wave number

◼ Aijaz et al. (2017) examined this 𝑃𝑤 impacts under a tropical cyclone condition.
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SST drop under hurricane

(cited from Fig.6 in Aijaz et al., 2017)

Cross-section of temperature under hurricane

(cited from Fig.8 in Aijaz et al., 2017)

Difference

Temperature

with wave-

induced 

mixing



Experiment Conditions

1. Examine Atmosphere-Wave Interactions

2. Examine Ocean-Wave Interactions

3. Examine Atmosphere-Ocean-Wave Interactions
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A
WRF

AW
WRF-WW3

AO
WRF-CROCO

AWO
WRF-CROCO-WW3

AO
WRF-CROCO

AWO.naw
WRF-CROCO-WW3

without wave-atmosphere coupling



Overview of Wave Coupling Effects
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Surface stress

& roughness

mixing Inertial

Oscillation

SST Heat Flux
Explosive

Cyclone

Intensity(heat flux)

Atmosphere-wave interactionsOcean-wave interactions

Atmosphere-ocean-wave interactions



Cyclone Track & Central SLP
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Time-series of the central sea level pressure (SLP)

Tracks of the cyclone centers



Overview of the Simulation Results
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Surface Wind (10m height) Significant Wave Height



Atmosphere-Wave Coupling Effects (𝐀𝐖− 𝐀)
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Friction Velocity 𝒖∗ Surface Roughness 𝒛𝟎

𝑢∗ and 𝑧0 are intensified by the modified parameterization in the atmosphere-wave coupling



Atmosphere-Wave Coupling Effects (𝐀𝐖− 𝐀)
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Sea Level Pressure (SLP)Surface Heat Flux

Surface heat flux raises with modified 𝑧0 and 𝑢∗, and SLP drops more deeply in AW



Surface Parameters: 𝐀𝐖,𝐀

18

✓Atmosphere-wave coupling makes surface rougher

and raises friction velocity.

✓Ocean wave coupling increases drag coefficient and 

enthalpy coefficient, resulting in higher heat flux into 

the atmosphere.

✓These results are consistent with Pianezze et al. (2018)

𝑧0

2019.11.12 2nd International Workshop on Waves, Storm Surges and Coastal Hazards

𝑢∗

𝐶𝑑 𝐶𝑘



Area-Averaged Sea Level Pressure & Heat Flux (𝐀𝐖,𝐀)
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5˚

5˚

2018010418

AW has less SLP and 

develops earlier.

AW has much larger heat 

Flux than A

Wave-coupling increases 𝑢∗, 𝑧0, and heat 

flux, which develops the cyclone stronger.

Surface heat flux



Ocean-Wave Coupling Effects (𝐀𝐖𝐎. 𝐧𝐚𝐰 − 𝐀𝐎)
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Sea Surface Temperature (SST) Mixed Layer Depth (MLD)*

With wave-induced mixing, MLD and SST drops more than independent ocean model.

* Defined as the depth whose 

buoyancy frequency is the largest



Model Comparison (𝐖𝐎− 𝐎)
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SST Difference
𝐖𝐎 𝐖𝐎−𝐎

With wave-induced mixing, the eddy viscosity is amplified and mixed layer depth is deepened.

Potential Temperature

Eddy Viscosity

Potential Temperature

Eddy Viscosity

--- MLD (WO)

--- MLD (O)



Area-Averaged Sea Level Pressure & Heat Flux (𝐀𝐎,𝐀𝐖𝐎. 𝐧𝐚𝐰)
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2018010418

5˚

5˚

AWO.naw has slightly 

larger SLP than AO.

AWO.naw has slightly 

less heat flux than AO.

Wave-induced mixing decreases surface heat flux and 

inhibits the development of the explosive cyclone.

Surface heat flux



Atmosphere-Ocean-Wave Coupling Effects (𝐀𝐖𝐎− 𝐀𝐎)
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Sea Surface Temperature (SST) Mixed Layer Depth (MLD)

With atmosphere-ocean-wave interactions, SST and MLD drops more deeply.



Model Comparison (𝐀𝐖𝐎− 𝐀𝐎)
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SST Difference

𝐀𝐖𝐎 𝐀𝐖𝐎− 𝐀𝐎

Potential Temperature

X current velocity

Potential Temperature

X current velocity

When atmosphere-ocean-wave interaction is active,

Increased 𝑢∗ enhances inertial oscillation under the cyclone

19 hours inertial oscillation

--- MLD (AWO)

--- MLD (AO)



Atmosphere-Ocean-Wave Coupling Effects (𝐀𝐖𝐎− 𝐀𝐎)
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Surface Heat Flux Sea Level Pressure (SLP)

In fully coupled model, the surface hear flux is enhanced and SLP drops more deeply.



Area-Averaged Sea Level Pressure & Heat Flux (𝐀𝐎,𝐀𝐖𝐎)
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2018010418

5˚

5˚

AWO has less SLP and 

develops earlier.

AWO has larger heat 

Flux than AO.

Wave-induced mixing cools SST, but wave-atmosphere 

coupling have more impacts on resultant heat flux.

Surface heat flux



Ocean Wave Effects on the Development of Explosive Cyclone
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Explosive

Cyclone

Intensity

Surface stress

& roughness

Heat Flux

Atmosphere-wave interactions

mixing

SST

(heat flux)

Ocean-wave interactions

Inertial

Oscillation

Atmosphere-ocean-wave interactions



Summary
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◼The modification of 𝑧0 and 𝑢∗ increases surface stress and roughness of the 

atmospheric surface, and enhances the surface heat flux.

◼ Introducing the wave-induced mixing in the ocean model declines MLD more 

deeply and cools SST down.

◼The wave coupling to both atmosphere and ocean intensifies the inertial 

oscillations by the explosive cyclone, resulting in deeper MLD and cooler SST.

◼These wave coupling effects influence the surface heat flux significantly and 

make prominent changes in the development of the explosive cyclone.

Future work

◼ It remains to be clarified how the enhanced heat flux make changes in the 

development in the context of atmospheric dynamism.

◼Feedbacks of the wave coupling to the wave development are still unclear.



APPENDIX
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Turbulence Parameterization: KPP (LMD scheme)

◼KPP (K-Profile Parameterization)

⚫Parameterize 2nd-order fluxes with 1st-order value like:

𝑢′𝑤′ = −𝐾𝑀
𝜕𝑢

𝜕𝑧
, 𝑣′𝑤′ = −𝐾𝑀

𝜕𝑣

𝜕𝑧
, 𝑤′𝜃′ = −𝐾𝐻

𝜕𝜃

𝜕𝑧
⚫ In the KPP scheme, non-local term 𝛾𝑎 is added to:

𝑢′𝑤′ = −𝐾𝑀
𝜕𝑢

𝜕𝑧
− 𝛾𝑢 , 𝑣′𝑤′ = −𝐾𝑀

𝜕𝑣

𝜕𝑧
− 𝛾𝑣 , 𝑤′𝜃′ = −𝐾𝐻

𝜕𝜃

𝜕𝑧
− 𝛾𝜃

◼ In the CROCO model, LMD (Large, McWilliams, Doney 1994) scheme is used.

◼ In terms of wave-current interactions, Qiao et al. (2004) introduced nonbreaking 
wave-induced turbulence effect into the KPP scheme.

New 𝐾𝑀 → 𝐾𝑀 + 𝐵𝑣,  New 𝐾𝐻 → 𝐾𝐻 + 𝐵𝑣

, 𝑤ℎ𝑒𝑟𝑒 𝐵𝑣 = 𝛼𝐴3𝑘𝜔
sinh 𝑘 ℎ + 𝑧

sinh 𝑘ℎ

3

(𝛼 = 0.1; cf.Wang et al. 2010)
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Comparison with Marine Observations
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Banqureau Bank

East Scotia Slope

LaHave Bank

JordanBasin

Massachusetts Bay

Virginia Beach

Nantucket Island

Long Island

Texas Tower

NOAA National Data Buoy Center



Model Comparison (𝐀𝐖𝐎− 𝐀𝐎)
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SST Difference

𝐀𝐖𝐎 𝐀𝐖𝐎− 𝐀𝐎

Potential Temperature

X current velocity

Potential Temperature

X current velocity

When atmosphere-ocean-wave interaction is active,

Increased 𝑢∗ enhances inertial oscillation under the cyclone



Pressure tendency equation (Fink et al., 2012)

𝜕𝑝𝑠𝑓𝑐

𝜕𝑡
= 𝜌𝑠𝑓𝑐

𝜕𝜙𝑝2
𝜕𝑡

+ 𝜌𝑠𝑓𝑐𝑅𝑑න
𝑝𝑠𝑓𝑐

𝑝2 𝜕𝑇𝑣
𝜕𝑡

𝑑ln𝑝 + 𝑔 𝐸 − 𝑃 + 𝑅𝐸𝑆𝑃𝑇𝐸

𝜌𝑠𝑓𝑐𝑅𝑑න
𝑝𝑠𝑓𝑐

𝑝2 𝜕𝑇𝑣
𝜕𝑡

𝑑ln𝑝 = 𝜌𝑠𝑓𝑐𝑅𝑑න
𝑝𝑠𝑓𝑐

𝑝2

−Ԧ𝑣 ∙ ∇𝑝𝑇𝑣 𝑑ln𝑝

+𝜌𝑠𝑓𝑐𝑅𝑑න
𝑝𝑠𝑓𝑐

𝑝2 𝑅𝑑𝑇𝑣
𝑐𝑝𝑝

−
𝜕𝑇𝑣
𝜕𝑝

𝜔𝑑ln𝑝

+𝜌𝑠𝑓𝑐𝑅𝑑න
𝑝𝑠𝑓𝑐

𝑝2 𝑇𝑣𝑄

𝑐𝑝𝑇
𝑑ln𝑝

+𝑅𝐸𝑆𝐼𝑇𝑇
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Geopotential tendency 

of upper boundary 

ITT: integrated virtual 

temperature tendency

Precipitation & 

evaporation

TADV: horizontal 

temperature advection

VMT: vertical motions

DIAB: diabatic processes



ITT: integrated virtual temperature tendency
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