

Estimating Global Extreme Sea Levels and the Resulting Impacts for the 21st Century

Ebru Kirezci and Prof Ian Young

2nd International Workshop on Waves, Storm Surges and Coastal Hazards 10-15 November, 2019

INTRODUCTION Motivation

- More than 600 million people reside in the low-lying coastal areas (below 10 m from the mean sea level) globally
- Generating approximately US\$1 trillion of global wealth
- It is estimated as 0.8–1.1 million people per year are flooded
- Climate Change and Sea level rise will further increase the resulting effects
- Extreme sea levels are of great concern
- There are increasing number of studies on global analysis regarding extreme sea levels

INTRODUCTION DIVA Database and GTSR dataset

- A sufficient **temporal** and **spatial resolution** for global assessments
- To date, many regional and global extreme sea level studies undertaken based on Dynamic Interactive Vulnerability Assessment (DIVA) database for coastal locations
- Global Tide and Surge Reanalysis (GTSR) dataset developed by Muis et al. (2016) based on the DIVA input database

GTSR Dataset Locations (we used 9866 points)

METHODOLOGY Historical Sea Levels

A linear addition of the contributors for mean sea level calculation, we create a 36 years (1979-2014) reanalysis time series with 10 min resolution:

We validate the resulting Historical Sea Levels against **GESLA-2** tide gauge dataset among **681 TG locations**

METHODOLOGY Dataset and Model Descriptions

Tide Model:

Previously in GTSR used FES2012

Here, we adopted the updated version

FES2014:

Better gridding

Improved data assimilation by adding tide gauges in addition to Satellite Altimeter Data

Surge Model:

GTSR surge levels (modelled previously with Delft3D FM) 6h temporal 0.75° x 0.75° spatial Time Period: 1979-2014

Wave Setup:

Two SWH datasets: **ERA-I GOW2** Wave setup is determined with **two methods** among 3 representative bed slopes of

> m=1/15 m=1/30 m=1/100

METHODOLOGY Extreme Value Analyses

METHODOLOGY Relative Sea Level Rise

- Regional Relative Sea
 Level Rise scenarios from
 IPCC AR5 is added (RCP
 4.5 and RCP 8.5) for the
 future ESL calculations
- For each DIVA location we applied

ESL_{future}=**ESL**_{historical} + **RSLR**

Note: average global RSLR across all the DIVA points is 0.21-0.71 m for RCP4.5 and 0.34-0.99 m for RCP8.5 by 2100

Fig. Regional RSLR at DIVA points for RCP 8.5 in 2100 (blue colour shows negative SLR and red colour shows (0-1m)

METHODOLOGY *Global Inundations*

- Inundation Extents are determined for the present conditions and for 2050 and 2100 with RCP 4.5 – RCP 8.5.
- Firstly, Shuttle Radar Topography Mission (SRTM) is considered
- Problematic due to vertical resolution (1m)
- Multi-Error-Removed Improved-Terrain DEM (MERIT DEM) with 1 km resolution (global scale assessment)
- MERIT DEM is based on SRTM with enhanced vertical resolution
- Bathtub approach (connection to coastline)
- Analysed with ArcGIS
- Assumed no coastal protection
- ESLs are originally referenced to mean sea level
- To be consistent with the topographic vertical datum, the GTSR extremes are corrected with Mean Dynamic Ocean Topography (MDOT) to determine inundation (Muis et al, 2017)

METHODOLOGY Societal and Economic Impacts

- Depending on the flooding extents, exposed populations and assets are determined
- Global Population data: Gridded Population of the World (GPW), v4, 30 arc-sec resolution (~1 km at equator)
- Asset exposure is determined by the approach proposed by Hallegatte et al (2013):

A=2.8*P*G

where

P= population count & **G**= Gross Domestic Product (GDP)

 GDP data: Global gridded GDP data of Kummu et al (2018) with 30 arc sec resolution (~1 km at equator)

RESULTS *Historical Time Series and Validation*

- Wave Setup : ERA-Interim and GOW2 with 1/15, 1/30 and 1/100 bed slopes
- GOW2 waves are preferred here as it has higher temporal and spatial resolutions (especially near coastlines)
- A representative bed slope is preferred here as 1/30 to account for the global bed slopes
- Two wave setup formulae:

12

RESULTS *Historical Time Series and Validation*

Among 681 GESLA-2 TG locations

Root Mean Square Error (RMSE)

T+S0.197 mT+S+WS0.204 m

Not surprising, WS has impacts during storm events RMSE is less than 0.2 m at 75% and 0.5 m 93% of locations

Percentile Bias (to better observe the effects of WS):

Bias reduced by 60% at the 99th percentiles of timeseries among TG locations, indicating better agreement with WS especially during extremes

RESULTS *Extreme Value Estimates and Validation*

- EVA method can make significant impacts on the ESL results.
- The optimal representation of EVA method is determined as

BEST : GPD98 (33% of TG locations, 34% of DIVA locations)

 20 year return period ESLs are validated against TG location that have at least 20 year timeseries data between 1979-2014

RESULTS *Extreme Value Estimates and Validation*

- EVA method can make significant impacts on the ESL results.
- The optimal representation of EVA method is determined as

BEST : GPD98 (33% of TG locations, 34% of DIVA locations)

 20 year return period ESLs are validated against TG location that have at least 20 year timeseries data between 1979-2014

RESULTS *Extreme Value Estimates and Validation -SPM vs Stockdon*

RESULTS *WS contribution on ESL (RP100)*

RESULTS Historical *ESL RP100 (i.e. at present)*

RESULTS Future *ESL RP100 at 2050*

RESULTS Future *ESL RP100 at 2100*

RESULTS *Global Coastal Hotspots*

RESULTS *Inundation Extents with Uncertainties*

RCP4.5	ESL _{lower} (10 ³ km ²)	ESL _{mean} (10 ³ km ²)	ESL _{upper} (10 ³ km ²)	Uncertainty span
RSLR _{lower} (10 ³ km ²)	<mark>604</mark>	647	697	-6.5% to 7.8%
RSLR _{mean} (10 ³ km ²)	699	<mark>737</mark>	789	-5.2% to 7.0%
RSLR _{upper} (10 ³ km ²)	797	837	<mark>894</mark>	-4.8% to 6.7%
Uncertainty span	-13.5% to 14.0%	-12.3% to 13.6%	-11.6% to 13.3%	
RCP8.5	ESL _{lower} (10 ³ km ²)	ESL _{mean} (10 ³ km ²)	ESL _{upper} (10 ³ km ²)	Uncertainty span
RCP8.5 RSLR _{lower} (10 ³ km ²)	ESL _{lower} (10 ³ km ²) <mark>661</mark>	ESL _{mean} (10 ³ km ²) 700	ESL _{upper} (10 ³ km ²) 750	Uncertainty span -5.5% to 7.2%
RCP8.5 RSLR _{lower} (10 ³ km ²) RSLR _{mean} (10 ³ km ²)	ESL _{lower} (10 ³ km ²) 661 779	ESL _{mean} (10 ³ km ²) 700 <mark>819</mark>	ESL _{upper} (10 ³ km ²) 750 874	Uncertainty span -5.5% to 7.2% -4.9% to 6.8%
RCP8.5 RSLR _{lower} (10 ³ km ²) RSLR _{mean} (10 ³ km ²) RSLR _{upper} (10 ³ km ²)	ESL _{lower} (10 ³ km ²) 661 779 915	ESL _{mean} (10 ³ km ²) 700 819 956	ESL _{upper} (10 ³ km ²) 750 874 1,009	Uncertainty span -5.5% to 7.2% -4.9% to 6.8% -4.3% to 5.6%

RESULTS *Population and Asset Exposure*

 Inundation extent increases by 6% with
 WS contribution only for the present conditions

For RCP 8.5, 16%
 increase by 2050 and
 48% increase by 2100

 Potential affected population will increase by 17% by 2050 and 52% by 2100

 Exposure of assets increase 15% by 2050 and 46% by 2100

Inundation extent and Population and Asset Exposure		Inundated Area without WS (10 ³ km ²)	Inundated Area with WS (10 ³ km ²)	Population Exposed (million people)	Asset Exposed (10 ⁹ US\$2011)
Present Day		521	553	148	7,761
2050	RCP4.5	593	631	171	8,848
2050	RCP8.5	601	640	173	8,961
2100	RCP4.5	702	737	202	10,222
2100	RCP8.5	779	819	225	11,301

A=2.8*P*G

where P= population count & G= Gross Domestic Product (GDP)

Note: Population and GDP data is based on year 2015

DISCUSSION and CONCLUSION

- Increase in coastal flood risk requires a global assessment to highlight high risk coastal ulletzones/hotspots for the upcoming century
- Number of datasets adopted to determine from the time series of sea levels to reach to ulletthe potential exposure of coastal areas
- Wave setup contribution is considered here, which was given less attention in previous ulletstudies
- *Two different wave setup calculation approaches are analysed and found insignificant* ۲ difference wrt ESLs
- On the other hand, WS is a significant contributor while extremes happen •
- Both historical timeseries and the derived ESLs are validated with wide extent of global TG ulletdata
- Number of EVA methods compared and best fitting is determined (GPD 98) •
- Regional-Relative Sea Level Rise is considered as SLR shows significant difference along ulletcoastal locations
- Uncertainty analysis is conducted wrt the EVA method used as well as the upper-lower ulletbounds of the SLR scenarios (RCP 4.5 and RCP 8.5) 25

DISCUSSION and CONCLUSION

- A GIS based bathtub approach is applied for determining the inundation extent, with an ulletenhanced version of topography (MERIT DEM)
- Potential exposure of the population and as correlated, the exposed assets are ۲ determined.
- By **2100**, with **RCP 8.5**, we estimate **52%** increase among the affected population and 46% ulletincrease of the global assets comparing with the present ESL conditions.
- For RCP8.5, 0.6% of the world's land area will be at risk of episodic coastal flooding by 2100 ulletfrom a **1** in **100-year return period event**, impacting **3%** of the world's population and threatening assets worth up to **18%** of global GDP.
- Tide and storm surge will account for 63% of the global area inundated by 2100, with ulletrelative sea level rise accounting for 32% and wave setup accounting for only approximately 5%.
- Projected sea level rise will significantly increase the frequency of coastal flooding by 2100, ulletwith results herein showing that for most of the world, flooding associated with a present day 1 in 100-year event could occur as frequently as once in 10 years, primarily as a result of sea level rise

THANK YOU