Development of the Alaska Coastal Ocean Forecast System ALCOFS

Joannes Westerink¹, Dam Wirasaet¹, William Pringle^{1*}, Guoming Ling¹, Mindo Choi¹, Clint Dawson², Kyle Steffan², Ayumi Fujisake-Manome^{3*}, Philip Chu³, Jia Wang³, Jesse Feyen³, Haoguo Hu^{3*} Carol Janzen⁴, Jesse Lopez⁵, Rob Bochenek⁵ Sergey Vinogradov⁶, Saeed Moghimi⁶, Edward Myers⁶, Andre van der Westhuysen⁷, Ali Abdolali⁷

¹University of Notre Dame, ^{1*}Joint University of Notre Dame & Argonne National Laboratory, ²University of Texas at Austin, ³NOAA GLERL, ^{3*}CIGLR/GLERL, ⁴AOOS, ⁵Axiom Science, ⁶CSDL NOS NOAA,⁷NCEP NWS NOAA

Workshop on Waves, Storm Surges and Coastal Hazards, Melbourne Australia November 12, 2019

ALCOFS regional domain

ALCOFS framework for multi-physics fast operational modeling

CFSv2 Global Atmospheric Model @

ADCIRC 2D

with baroclinic pressure gradient, internal tide, and dispersion terms

WAVEWATCH III Wave Energy

CICE Regional Sea Ice Model

HYCOM 3D Global Circulation @

Multi-physics interfacing heterogeneous models over a unified domain

Dynamic coupling of ADCIRC 2D, WAVEWATCH III, HYCOM and CICE

Interleafing over a unified domain on heterogeneous grids communicating through ESMF/NUOPC

[@]Indicates standalone model component

1. Evolving an Alaska tide and storm surge model within operational constraints

CFSv2 Global Atmospheric Model @

ADCIRC 2D

internal tide, and dispersion terms

CFSv2 and GOFS3.1 sea ice data @

Development of a light operational mesh for the region

Mesh4-fp-v2 triangulation

Mesh4-fp-v2 bathymetry

Development of a light operational mesh for the region

Mesh resolution (m)

M₂ amplitudes (m) and phases (degrees) for Mesh4-fp-v2

M₂ amplitude (m) and phase (degrees) errors for Mesh0 and Mesh4-fp-v2

CFSv2 Global Atmospheric Model @

ADCIRC 2D

with baroclinic pressure gradient, internal tide, and dispersion terms

CFSv2 and GOFS3.1 sea ice data @

 $C_{dn10} = (1 - A) C_{d,a \to w} + A C_{skin,a \to i \to w} + A C_{form,a \to i \to w} (1 - A)^{\beta}$

A

ADCIRC 2D

with baroclinic pressure gradient, internal tide, and dispersion terms

CFSv2 and GOFS3.1 sea ice data @

 $C_{dn10} = (1 - A) C_{d,a \to w} + A C_{skin,a \to i \to w} + A C_{form,a \to i \to w} (1 - A)^{\beta}$

ADCIRC 2D

with baroclinic pressure gradient, internal tide, and dispersion terms

 $C_{dn10} = (1 - A) C_{d,a \to w} + A C_{skin,a \to i \to w} + A C_{form,a \to i \to w} (1 - A)^{\beta}$ Form drag reduction as A increases is controlled by β

Optimizing air through ice to sea drag laws: November 2011 Fringe ice

Computed water level with no ice and ice with varying β values in the C. Lüpkes et al. (2012) formula.

Optimizing air through ice to sea drag laws: February 2011 Pack ice

23-Feb-2011 03:00:00

-180

-190

-150

-160

-140

-130

Computed water level with no ice and ice with varying β values in the C. Lüpkes et al. (2012) formula.

Optimizing *air through ice to sea* drag laws: *January 2017 Partial ice*

Optimizing *air through ice to sea* drag laws: *February 2019 Partial ice*

Computed water level with no ice and ice with varying β values in the C. Lüpkes et al. (2012) formula.

3. Evolving a coupled Alaska tide, storm surge and wind wave model

CFSv2 Global Atmospheric Model @

ADCIRC 2D

with baroclinic pressure gradient, internal tide, and dispersion terms

WAVEWATCH III Wave Energy

CFSv2 and GOFS3.1 sea ice data @

Evolving a coupled Alaska tide, storm surge and wind wave model

Significant wave height

Comparison of significant wave height with the physical location of buoy on the right

Evolving a coupled Alaska tide, storm surge and wind wave model

Comparison of significant wave heights computed with WW3 to JASON1-A Altimetry derived values on Nov. 09th 2011 around 20:50

4. Developing a high resolution CICE regional model component

[@] Indicates standalone model component

Developing a high resolution CICE regional model component

5. Baroclinicity as a driver of steric water level fluctuations and ocean currents

CFSv2 Global Atmospheric Model @

ADCIRC 2D

with baroclinic pressure gradient, internal tide, and dispersion terms

HYCOM 3D Global Circulation @

Heterogeneous mode splitting

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + f \boldsymbol{k} \times \boldsymbol{u} = -\nabla \left[\frac{p_s}{\rho_0} + g(\zeta - \zeta_{EQ} - \zeta_{SAL}) + \frac{\nabla M}{H} - \frac{\nabla D}{H} - \frac{\nabla B}{H} + \frac{\boldsymbol{\tau}_s}{\rho_0 H} - \frac{\boldsymbol{\tau}_b}{\rho_0 H} - \mathcal{F}_{IT} \right]$$

Baroclinic pressure gradient (BPG):

$$\nabla B = \int_{-h}^{\zeta} \left(g \nabla \left[\int_{z}^{\zeta} \frac{\rho - \rho_{0}}{\rho_{0}} \right] dz \right) dz$$

Momentum Dispersion:

$$\nabla D = \nabla \int_{-h}^{0} \left[(\boldsymbol{v} - \boldsymbol{V}) \cdot (\boldsymbol{v} - \boldsymbol{V}) \right] dz$$

Internal tide induced barotropic energy conversion:

$$\mathcal{F}_{IT} = C_{IT} \frac{[(N_b^2 - \omega^2)(\tilde{N}^2 - \omega^2)]^{1/2}}{\omega} (\nabla h \cdot \boldsymbol{u}) \nabla h$$

GOFS3.1 forcing of the ADCIRC global model: currents

GOFS3.1 forcing of the ADCIRC global model: sea surface elevation

Comparison of sea surface height RMS variability between GOFS3.1 and ADCIRC forced with GOFS3.1 temperature and density fields

GOFS 3.1

ADCIRC forced with GOFS 3.1 temperature and salinity fields

Sample comparison of 30 day averaged water levels – Atlantic Basin

Sample comparison of 30 day averaged water levels – Western Pacific

Sample comparison of 30 day averaged water levels – Eastern Pacific

6. Global model tide sensitivity to bathymetry and high resolution insets

Mesh

Global 24-2 Global 24-2 Global 24-2 + Mesh4-fp-v2

Bathymetry

GEBCO2015, Asia high res GEBCO2019, CHS NONNA-100 GEBCO2019, CHS NONNA-100, NOAA Alaska CRM

Global 24-2 M₂ tide with GEBCO2015 and HR Asia compared to TPX09 Atlas

Global 24-2 with GEBCO2019 & CHS NONNA-100 compared to TPX09 Atlas

Global 24-2 <u>+ Mesh4-fp-v2</u> with GEBCO2019, CHS NONNA-100 and <u>NOAA CRM</u> compared to TPX09 Atlas

Global 24-2 with GEBCO2015 and HR Asia bathy compared to M₂ station data <u>run with updated ADCIRC</u>

Global 24-2 with <u>GEBCO2019 & CHS NONNA-100 bathy</u> compared to M₂ station data run with updated ADCIRC

Global 24-2 <u>+ Mesh4-fp-v2</u> with GEBCO2019, CHS NONNA-100 and <u>NOAA CRM</u> compared to TPX09 Atlas

Regions of strong global tidal dissipation

Egbert and Ray, 2000

7. ALCOFS framework path forward

CFSv2 Global Atmospheric Model @

ADCIRC 2D

with baroclinic pressure gradient, internal tide, and dispersion terms

WAVEWATCH III Wave Energy

CICE Regional Sea Ice Model

HYCOM 3D Global Circulation @

- Evolve meshes with higher inland detail
- Improve inner shelf and estuarine bathymetry
- Full integration into the updated global 24-2 shell
- Radiation stresses from wave model to ADCIRC
- Test various ice physics options in WW3
- Fully couple into high resolution CICE
- Integration of components using ESMF/NUOPC