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• Modeling large-scale tides, surge 
(and other effects on SSH) on a 
global mesh

• Use unstructured mesh elements 
to seamlessly downscale to useful 
local scale resolution, O(10 m) 

• Benefits:
- No open boundaries / nesting
- Capture all events at all times
- Account for all spatial modes
- Everything coupled at physics 
level

Philosophy
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Advances we have been working on – briefly show today

1. Extend a commonly used finite-element (FEM) 
coastal storm surge model (ADCIRC) to accurately 
and quickly simulate the whole Earth 

2. Introduce seamless refinement at the coast and 
on-land where/when required to dynamically 
simulate flooding
- FEM is useful here because even meshes with fast size 

transitions and skewed elements will simulate adequately

3. Account for low-frequency modes (e.g., ocean 
currents) that impact sea levels 



Generalized Wave Continuity Model (ADCIRC)

• Reformulates SWEs into the generalized wave continuity equation 

(GWCE) – a 2nd order PDE to remove oscillations by FEM

• So far has been used to model local and regional domains

• Some modifications required to extend ADCIRC to correctly solve 

the SWE on the sphere (Global model)

1. Improving shallow water wave equations for global 
simulations 
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Shallow water equations in spherical coordinates



• tan(φ) terms ignored…

0

0

0

0
Current ADCIRC model equations



• Use an arbitrary cylindrical projection to map (λ,φ) onto (x,y):
(Select desired p = 0, 1, 2)

• Multiply continuity by cosp(φ) [= 1 when p = 0]:
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(λ0,φ0) is arbitrary origin 

this is just a 
constant

Proposed solution
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Testing on a global mesh 
Roberts, K.J., Pringle, W.J., Westerink, J.J., 2019. OceanMesh2D 1.0: 

MATLAB-based software for two-dimensional unstructured mesh 
generation in coastal ocean modeling. Geosci. Model Dev, 12, 1847-
1868. doi:10.5194/gmd-12-1847-2019

Made using  OceanMesh2D

Nominal element sizes range ~2 km to 25 km

https://github.com/CHLNDDEV/OceanMesh2D/

Stereographic 
projection centered 
at North Pole

Note:
We have been able to use 
around 2 min time step on 
this mesh. Equivalent to CFL 
of 13.
5-day forecast on 48 CPUs 
takes 10 minutes

https://github.com/CHLNDDEV/OceanMesh2D/


M2 tides
TPXO9-Atlas

Old ADCIRC

New ADCIRC



M2 tide RMSE

New ADCIRC

Old ADCIRC

Area-averaged global RMSE

• RMSE in deep ocean almost half old ADCIRC 
version 

• All projections give same solution

• RMSE also decreased from previous non-
assimilated models in Stammer et al., (2014)

1 km 
cutoff



Comparisons of M2 amp difference to TPXO9-Atlas for different bathymetry

New GEBCO 2019 + 100-m DEMS

Old GEBCO

Both use depths under ice shelves in Antarctica from 
Schaffer, J et. al. (2016). A global, high-resolution data set of ice sheet 
topography, cavity geometry, and ocean bathymetry. Earth Syst. Sci. Data, 
8, 543–557. doi:10.5194/essd-8-543-2016

(merged into the old GEBCO)

100-m DEMS from DeepReef Explorer for Northwest Aus
and Coral Sea (https://www.deepreef.org/bathymetry/) & 
Canadian Hydrographic Service NONNA-100 
https://open.canada.ca/data/en/dataset/d3881c4c-650d-
4070-bf9b-1e00aabf0a1d

GEBCO Seabed 2030 Project is already helping

https://www.deepreef.org/bathymetry/
https://open.canada.ca/data/en/dataset/d3881c4c-650d-4070-bf9b-1e00aabf0a1d
https://seabed2030.gebco.net/


Simulating Tide and Surge: Aug 2 – Sep 10, 2019
Maximum wind speeds/minimum surface pressure at sea level

Maximum storm surge (no tides)

GFS 0.25 deg 
atmos forcing

~10 min wall-clock 
time on 240 CPUs



Maximum Storm Tide: Aug 2 – Sep 10, 2019

Western North Atlantic 1

3

4
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Maximum Storm Tide: Aug 2 – Sep 10, 2019

Western North Pacific 

20 - Lingling

11 - Krosa
15 – Faxai

22 – Lekima

24 – Lekima



2. Seamless local refinement at the coast for coastal 
flooding simulation

Prepare mesh using 
OceanMesh2D Mesh Arithmetic

+ =

non-commutative (order matters, first mesh is given priority)

Beira, Mozambique

Based on 1x1 deg SRTM3 boxes
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TC Fani

Forecast mode:
Pre-compute locally 
refined meshes and select 
which to “plus in”

TC Fani

High wind 
speed

High water 
from coarse 
mesh 
simulation



Tropical Cyclone Idai – Mid-March 2019





3. Including effects of low frequency modes on SSH by 
coupling to density structure of ocean

• Can be used to ensure sea level in storm surge 
models are referenced to the geoid 

• We have shown spectral energy of elevations is 
increased to better match observed time series 

• Follows seasonal variations in sea levels
• Captures local set-down in sea levels due to hurricane cold 

wakes
• Overall model skill is increased

• Other possibilities
e.g., downscaling climate-ocean models to get long-term 
variation in coastal elevations

Pringle, W.J., et al., (2019). Baroclinic Coupling Improves Depth-Integrated Modeling of Coastal Sea Level Variations 
around Puerto Rico and the U.S. Virgin Islands. JGR Oceans, 124 (3), 2196-2217. doi:10.1029/2018JC014682

Also see: Kodaira, T., Thompson, K. R., & Bernier, N. B. (2016). The effect of density stratification on the prediction 
of global storm surges. Ocean Dynamics, 66(12), 1733–1743. https://doi.org/10.1007/s10236-016-1003-6

Slobbe, D. C., Verlaan, M., Klees, R., & Gerritsen, H. (2013). Obtaining instantaneous water levels relative to a geoid 
with a 2D storm surge model. Continental Shelf Research, 52, 172–189. https://doi.org/10.1016/j.csr.2012.10.002

2D-Momentum equations

Baroclinic pressure gradient

Obtain ρ from an ocean 
circulation model



Matching seasonal 
variations in SSH and 
increasing spectral energy

22Pringle, W.J., et al., 2019. Baroclinic Coupling Improves Depth-Integrated 
Modeling of Coastal Sea Level Variations around Puerto Rico and the U.S. 
Virgin Islands. JGR Oceans, 124 (3), 2196-2217. doi:10.1029/2018JC014682

Low frequency 
(seasonal)

High frequency 
(minutes)

30-day moving average 
Spectral-density



Surge (non-tidal residual)

Effect of TC cooling ocean surface (cold wake)Irma Maria
(SSH)
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Pringle, W.J., et al., 2019. Baroclinic 
Coupling Improves Depth-Integrated 
Modeling of Coastal Sea Level 
Variations around Puerto Rico and the 
U.S. Virgin Islands. JGR Oceans, 124 (3), 
2196-2217. doi:10.1029/2018JC014682

Better match during 
Hurricanes Irma and Maria



Some time series for 
preliminary global model

30-day moving average 



Further advances/things we want to do

1. Execute and deploy the automatic local refinement 
for forecast model
• Investigating local refinement indicators
• Investigating sub-grid parameterizations to avoid 

excessive refinement

2. Further improve parameterizations of internal tide 
dissipation, bottom friction, ice-sea dissipation 
• May be a good application for AI

3. Further investigate and improve on the global storm 
surge model coupling with ocean circulation models
• Sensitivities to interpolation, resolution, and dissipation 
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