Hindcasting Storm Surge and Overland Flooding at High Resolution using Delftd-3D Flexible Mesh: Case study - Xynthia Storm, France

TRANG DUONG, JEREMY BRICKER, REMI MEYNADIER, JOHAN REYNS, MAIALEN IRAZOQUI AND ROSH RANASINGHE

11/2019, MELBOURNE, AUSTRALIA

Motivation

- dynamically coupled Delft3D-FM and SWAN to obtain storms surge (SS) driven flood depths (tide + surge + wave setup) and flow velocities at high resolution (~10m).
- assess economic loss due to SS events by developing site specific fragility functions.
- quantitative cost-benefit analyses of proposed SS defense measures (i.e., levees, elevated landfill, seawalls, pumps) along coasts with high loss potential.

Case study: Xynthia storm, 27th-28th Feb 2010, in France

Fig. 3. Area flooded and the loss of life as the result of Xynthia in 2010.

Xynthia storm track (27th – 28th Feb 2010)

~~

5

0

-5

Martin (1999)

10.1

37

0

5

Modelling framework

Large scale coarse Delft3D-FM Tide, surge and flooding model (finest ~300m resolution), for **Bay of Biscay**.

Tide/ Wind/ Pressure

Fine Delft3D-FM model: dynamically coupled (tide, surge and wave) total WL and flooding with (~10m resolution), for Ile de Re', France

TWL = Tide + Surge + Wave set-up

Large Scale Model	Simulation time	Forcing	Output	Bathymetry
Tide	25/06/2010- 01/09/2010	- GTSM Tidal forcing	- His: 10mins	- Bathymetry: GTSM
Tide+SS+Flood	22/02/2010 - 05/03/2010	 GTSM Tidal forcing Spatial downscaled wind and pressure fields 	His:10minsMap:6hrs	 Bathymetry: GTSM Topography: IGN DEM data (75m resolution)

 \frown

Water Level data availability

> 2 stations with available WL data (Source: SHOM) in **year 2010**:

La Rochelle, Les Sables (during: summer (yellow box) and Xynthia storm (blue box)).

12-Jan-2010

03-Mar-2010

22-Apr-2010

11-Jun-2010

31-Jul-2010

19-Sep-2010

08-Nov-2010

1. Large Scale Delft3D-FM Tide Model

Model Validation

Bias	RMSE
-0.15m	0.27m

2

2

2. Large Scale Delft3D-FM Tide + SS + Flooding model

RMSE

0.23m

RMSE

0.24m

Model Validation

2. Large Scale Delft3D-FM Tide + SS + Flooding model

Max flood depth and Max flood flow speed

Water Educati

under the auspice of UNESCO

ducational. Scientific and

ultural Organizatio

2. Large Scale Delft3D-FM Tide + SS + Flooding model

> Max flood depth and Max flood flow speed (zoom in)

Coarse model Max flood flow speed (m/s)

Fig. 3. Area flooded and the loss of life as the result of Xynthia in 2010.

Educational, Scientific and

Cultural Organization

Water Education under the auspice

of UNESCO

3. Wave modelling

Simulation time: same time as large scale SS model for Xynthia

3. Wave data availability

➢ 6 wave buoys with available wave data (Source: EMODnet) during Xynthia in year 2010: (in yellow)

Station	Name	Coordinate	Available data
S1	lle d'Yeu Nord	Lon=-2.295 Lat=46.833	H (Swell height) T (Swell period)
S2	Plateau Du Four	Lon=-2.787 Lat=47.239	H (Wave height) T (Wave period) D (Wave direction)
S3	Missing (named: S3)	Lon=43.8916 Lat=-3.8159	H (Wave height) T (Wave period) D (Wave direction)
S4	Gascogne	Lon=-5 Lat=45.2	H (Swell height) T (Swell period)
S5	Missing (named: S5)	Lon=43.6382 Lat=-3.1012	H (Wave height) T (Wave period) D (Wave direction)
S6	Anglet	Lon=-1.614 Lat=43.53	H (Wave height) T (Wave period) D (Wave direction)

S

C

3. Wave model validation

> Wave validations (time series, scatter plots, Bias/RMSE)

3. Wave model validation

> Wave validations (time series, scatter plots, Bias/RMSE)

4. Fine Tide, SS, Flooding Model (Flow+Wave)

- / /

Fine Model	Simulation time	Forcing	Output	Bathymetry + Topography
Flow (Tide+SS) + Wave	22/02/2010 - 05/03/2010	 Tide from large scale (Tide+SS) model Spatial downscaled wind and pressure fields Wave from local nested SWAN model 	His:10minsMap:6hrs	 Bathymetry: GTSM Topography: IGN DEM data (5m resolution)

4. Fine Tide, SS, Flooding Model (Flow+Wave)

Manually checking and including all structures (sea walls, dunes, groynes, breakwaters, harbours/ports, etc...) in the model, all along the claimed areas of the whole island.

4. Fine Model - Expected outcomes

- ✓ max flood depth and flow velocities at high resolution (individual building scale)
- To build fragility functions at high spatial resolution which may be used for future decision making regarding coastal flood risk management.

THANK YOU!

