The European Commission's science and knowledge service

32

3

Joint Research Centre

de.

The Unresolved Obstacles Source Term, application cases on regular and triangular meshes

Lorenzo Mentaschi, Giovanni Besio, Michalis Vousdoukas, Luc Feyen

November 2019, Melbourne

Unresolved Obstacles Source Term (UOST)

Approach to parameterize the effect of small islands based on source terms

- LD-SE scheme: 2 source terms:
- Local Dissipation
- Shadow effect

For regular grids UOST comes as an alternative to the approach implmemented in the numerical scheme «GRIDGEN»

Advantages:

- it improves the model skill by considering obstacles layout and direction
- it can be applied to any type of mesh

PART OF RELEASE 6.07 OF WW3 (UOST SWITCH)

2 types of transparency coefficient

- For local and shadow dissipation
- For each spectral component
- **a**: total transparency
- **β**: obstacles layout-dependent transparency

SoftwareX Volume 9, January–June 2019, Pages 1-6

Original software publication

alphaBetaLab: Automatic estimation of subscale transparencies for the Unresolved Obstacles Source Term in ocean wave modelling

- Computes a and $\boldsymbol{\beta}$ for meshes from real bathymetries
- Python3 library (but no need to be a python programmer to use it)
- Supports regular and triangular meshes
- The computation is fully parallelized. Fast enough.
- Documentation:
 - Code available on github
 - Wiki page
 - Installation guide
 - Examples
 - Publication describing the architecture

Time step settings:

•

for UOST to work properly at a given cell/spectral component ...

- the global time step (T_G) should be \leq the critical CFL time step T_{CFL}
- $T_G > T_{CFL}$: the energy travels through more than one cell before the source term is applied. LEAKAGE OF ENERGY.

 $T_G \leq T_{CFL}$: the energy travels through less than one cell before the source term is applied.

Importance of representing subscale obstacles

(10 years runs at resolutions 1.5° and 0.4°, forced by CFSR, validation with sat. altimeters)

The effects of subscale modelling at 1.5° res. Model's skill improves a lot if any u.o. parameterization is adopted

The effects of subscale modelling at 0.4° res.

- Still, in areas with small islands UOST is doing better
- Apparently, in some areas GDGN overestimates the effect of the unresolved island
- Hypothesis:the differences btw
 GDGN and UOST are mainly in the diagonal swell

Unresolved obstalces in a longitudinal swell (0.4°) UOST and GDGN are almost identical

Unresolved obstalces in a diagonal swell (0.4°) Significant differences between UOST and GDGN

2008-02-22

Frequency (Hz)

2008-02-23

2008-02-24

Possible explanation of GDGN overdissipation in diagonal swell (a monochromatic thought experiment with a circular island) ... how does it work?

$$\underline{\mathsf{E}}_{\circ} \quad \boxed{\alpha_{-} \mathsf{E}}_{\circ} \quad \underline{\alpha_{+} \alpha_{-} \mathsf{E}}_{\circ} = \alpha \mathsf{E}_{\circ}$$

 $\alpha = \alpha \cdot \alpha_+$

Behavior with diagonal swell (circular island with a=0.5)

The final energy is $0.5E_0$

... but the diagonal cross-section is 0.35 ...

... the final energy should be $0.65E_0$

UOST and triangular meshes

- UOST can help the modeller to better concentrate on the areas of interest, and not to increase the resolution at any small island.
- Case study: triangular mesh with 15km res. offshore and 2km nearshore. Forcing from downscaled CFSR.

bias (m)

Comparison between UOST and NOSM:

- validation offshore versus satellite altimeters (10 years).
- UOST significantly reduces the model bias (shaded areas).

Comparison btw triangular (UOST) and regular (GDGN)

 unstructured setup with 15km res. offshore and 2km res. nearshore.

$$\widehat{\underline{\varepsilon}}$$
 • validation offshore versus
satellite altimeters (30 years).

Final remarks

- The parameterizing u.o. plays an important role in the skills of a model: a 1.5° res. model with a parameterization of u.o. performs better than a 0.4° res. model without.
- In regular grids UOST can improve the model skill by better representing the geometry and the layout of the obstacles, especially in presence of diagonal swell.
- In triangular meshes UOST removes the need of increasing the resolution in proximity of any small feature, potentially leading to
 - the simplification in the development process of large scale meshes
 - a significant decrease of the computational demand of accurate large scale meshes.
- UOST is part of WW3 6.07 (UOST switch)

References

Mentaschi, L., Pérez, J., Besio, G., Mendez, F. J., & Menendez, M. (2015). Parameterization of unresolved obstacles in wave modelling: A source term approach. Ocean Modelling, 96, 93-102.

Mentaschi, L., Kakoulaki, G., Vousdoukas, M., Voukouvalas, E., Feyen, L., & Besio, G. (2018). Parameterizing unresolved obstacles with source terms in wave modeling: A real-world application. Ocean Modelling, 126, 77-84.

Mentaschi, L., Vousdoukas, M., Besio, G., & Feyen, L. (2019). alphaBetaLab: Automatic estimation of subscale transparencies for the Unresolved Obstacles Source Term in ocean wave modelling. SoftwareX, 9, 1-6.

Any questions?

You can find me at lorenzo.mentaschi@ec.europa.eu

UOST equations

Total block: *α* --> **0**

$$\frac{\partial F}{\partial t}\Big|_{LD} = \frac{\partial F}{\partial t}\Big|_{SE} = -D \gamma F , \gamma >> 1$$

Meaning of β

 $\beta \approx a$: all the unresolved obstacles are close to the upstream side.

 $\beta \approx 1$: all the unresolved obstacles are close to the downstream side. Their effect on the local cell is small.

