

JBA consulting

Photo: Craig Colville

Predicting present and future coastal flood risk in North East Wales

Fay Fishford & Thomas Bennett-Lloyd, JBA Consulting Benjamin Hext, Natural Resources Wales 1st International Workshop on Waves, Storm Surges and Coastal Hazards, 14th Sept 2017 **fay.fishford@jbaconsulting.com**

North East Wales

Previous flooding

JBA

5th December 2013

Peak Offshore Conditions skew surge = 0.88msea level = 5.43mAODHs = 4.58mTm = 6.58sdirection = 285°

<u>Damage</u>

- 170 homes flooded
- 400 people evacuated
- 4 casualties
- 5 electrical fires

2013 flood maps didn't include the threat from overtopping

Method

8.0

6.0 5 5.0

\$ 4.0

2.0 1.0 0.0

Multi-variate statistical analysis of water levels and offshore wave and wind conditions. Produce Monte Carlo sample representing 10,000 years

Multi-variate statistical analysis

Marginal Modelling: Hs, Tm, wind speed and skew surge

Describe the distribution of each variable independently

Distributions were fitted so as to replicate the physical limits of this location:

- Wind speed upper end point: bottom of hurricane scale (33 m/s)
- Wave height & period upper end point : consistent with British Standard nomograph

Multi-variate statistical analysis

Dependence Modelling

Find the relationship between variables Used the Heffernan & Tawn dependence model

Multi-variate statistical analysis

Monte Carlo sample

Create a Monte Carlo sample of offshore conditions with the same properties as the observed data. This sample represents 10,000 years.

Future Risk: changing offshore climate

- Waves are fetch limited
- Future wave and wind climates were not changed

• Sea level rise applied before waves were transformed into the nearshore

JBA consulting

Numerical Modelling

Wave Transformation Modelling

- SWAN
- Spatially varying water level grid
- 'Calibrated' against RADAR observations

Wave Emulation

- Offshore dataset represents 10,000 years includes 172,342 events
- Simulated 800 events with SWAN
- Used emulators to, transform the remaining events into nearshore conditions

Wave Overtopping

- Split coastline into 32 sections with similar defence and wave characteristics
- Calculated overtopping using Neural Network
- Calibration against flood history: hindcast

Image: google.co.uk

Wave Overtopping: Hindcast

Wave Overtopping: validation

Denbighshire County Council CCTV

Inundation Modelling

- TUFLOW and Flood Modeller (ISIS) coupled
- 2D finite difference 1D river model
- 5m grid
- Run for 3 tidal cycles
- Varying offshore water levels
- Overtopping inflows

- Dune Crest Heights
- Wave Overtopping Inflows

- Model Domain
- Buildings

Simulation of 5th Dec 2013

Using the results to manage flood risk

Managing coastal flood risk

 Study results will be used to update NRW flood warning and alert thresholds and areas

The study

 Outputs will also
 be used inline
 with Planning
 Policy Wales to
 prevent
 inappropriate
 development on
 the flood plain

0	0 0	0
0	0 0	0
0	0 0	2
1	1 0	3
		1 0

https://naturalresources.wales/flooding/check-flood-warnings/list?lang=en&severity=Sev...

Darby N M

Coastal Hazard Maps

Questions? Fay.Fishford@jbaconsulting.com