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Ocean Surface Waves

 The Traditional View: The random phase
Gaussian approximation describes ocean surface
waves

The Problem is: This is untrue!
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NONLINEAR OCEAN WAVES

and the Inverse Scattering Transform

For more than 200 years, the Fourier Transform has been one of the most
important mathematical tools for understanding the dynamics of linear wave
trains. Nonlinear Ocean Waves and the Inverse Scattering Transform presents
the development of the nonlinear Fourier analysis of measured space and
time series, which can be found in a wide variety of physical settings
including surface water waves, internal waves, and equatorial Rossby waves.
This revolutionary development will allow hyperfast numerical modelling of
nonlinear waves, greatly advancing our understanding of oceanic surface
and internal waves. Nonlinear Fourier analysis is based upon a generalization
of linear Fourier analysis referred to as the inverse scattering transform, the
fundamental building block of which is a generalized Fourier series called
the Riemann theta function. Elucidating the art and science of implementing
these functions, in the context of physical and time series analysis and
modeling, is the goal of this book.

* Topics include: physical foundations, nonlinear
Fourier analysis, nonlinear time series analysis,
hyperfast nonlinear numerical modeling, rogue
waves, internal solitons and ocean acoustics,
nonlinear coastal zone dynamics

* Geared toward the introductory as well as advanced
reader venturing further into mathematical and
numerical analysis

* Suitable for classroom teaching as well as research
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Conclusions:

The Traditional View

whose amplitudes are Gaussian [Kinsman’s book].

* |f the spectrum is “narrow banded” then the envelope
(modulation) is Rayleigh [Longuet-Higgins, 1955],
implying that the wave heights are also Rayleigh.

* The probability “tail” at high amplitude is due to the
Stokes correction, which makes the waves higher and
steeper.
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Soliton Turbulence
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PRL 113, 108501 (2014) PHYSICAL REVIEW LETTERS 5 SEPTEMBER 2014

S

Soliton Turbulence in Shallow Water Ocean Surface Waves
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We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm,
for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of
nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described
theoretically by the soliton limit of the Korteweg—deVries equation, a completely integrable soliton system:
Hence the phrase “soliton turbulence” is synonymous with “integrable soliton turbulence.” For periodic-
quasiperiodic boundary conditions the ergodic solutions of Korteweg—deVries are exactly solvable by finite
gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the
energetic peak of a storm have low frequency power spectra that behave as ~w~'. We use the linear Fourier
transform to estimate this power law from the power spectrum and to filter densely packed soliton wave
trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ~w™!
region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation,
which supports our interpretation of the data as soliton turbulence. From the probability density of the
solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.

DOI: 10.1103/PhysRevLett.113.108501 PACS numbers: 92.10.Hm, 92.10.Lq, 92.10.Sx
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Solitons under large packets
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Breather States in the Currituck
Sound Data
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Rogue Wave
Evolution in 1+1




Ocean Wave Spectrum: Effects of
Modulational Instability
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