Estimation of directional spreading within surface water waves

Yannis Karmpadakis, Chris Swan, Mohamed Latheef, Marios Christou

Fluid Mechanics Section Department of Civil & Environmental Engineering Imperial College London

Introduction

- Crest height statistics important for design of marine structures;
- Evidence of amplifications beyond 2nd-order from the field; (Christou & Ewans, 2012)
- Directionality acts to reduce these non-linear amplifications;
- Limited amount of data from the field in steep seastates;
- Laboratory simulations incorporating non-linearity and directionality;
- Role of directionality in steep sea-states and the formation of large wave events.

Key points

- 1. Generation of directionally spread sea-states in a laboratory environment;
- 2. Estimation of the degree of directional spreading within a sea-state and large individual waves;
- 3. Changes in the directional spreading with increasing steepness.

Experimental investigation

Imperial College London wave basin Water depth: d = 1.25 m Measurements: η and u, v, w. 20 seeds x 1024 s JONSWAP spectra, $\gamma = 2.5$ $H_s = [0.10, 0.15, 0.20]$ m $T_p = 1.6$ s, $\sigma_{\theta} = 15^o$

For the frequency spectrum, $S_{\eta\eta}(\omega)$, the directional spectrum is: $F(\omega, \theta) = S_{\eta\eta}(\omega)D(\omega, \theta)$, (1) where $D(\omega, \theta)$ is the directional spreading function (DSF).

In this study: Gaussian DSF - frequency independent

 $D(\omega, \theta) = \frac{A}{\sigma_{\theta \sqrt{2\pi}}} e^{\left[-\frac{(\theta - \theta_m)^2}{2\sigma_{\theta}^2}\right]}$ with σ_{θ} the standard deviation, θ_m the mean wave direction and A a scaling parameter.

(2)

Methods of directional wave generation: DSM

Three methods of generation:

- Double Summation Method (DSM):
 - Each frequency (*i*=1:*N*) has M wave components at different directions
 - Total MN components
 - Issues with ergodicity, cancellation of wave components with same frequency but different directions

$$\eta(x, y, t) = \sum_{i=1}^{N} \sum_{j=1}^{M} A_{ij} \cos[\omega_i t - k(x \cos \theta_j + y \sin \theta_j) + \epsilon_{ij}], \quad (3)$$

where

$$\omega_i = i(2\pi\Delta f), \ \theta_j = j \ \Delta \theta \text{ and } A_{ij} = \sqrt{2} \ S_{\eta\eta}(\omega, \theta) \Delta \omega \Delta \theta$$

Methods of directional wave generation: DSM

Numerical Simulations with LRWT:

- Repeat time = 1024 s (3 hrs field equivalent) $\Delta f = 1/1024$ Hz
- Variations in $H_s \sim 5\%$ unwanted in model testing
- Increase frequency discretization $\frac{1}{P \Delta f}$, P = 2,4,8 ... 48

practical problems with wave-makers

Methods of directional wave generation: SSM,RDM

- Single Summation Method (SSM):
 - Widely applied
 - Division in frequency bands,
 - Each frequency 1 direction
 - No problems with ergodicity
 - Sensitive to the discretization of the frequency spectrum

 $\eta(x, y, t) = \sum_{i=1}^{N} A_i \cos[\omega_i t - k(x \cos \theta_i + y \sin \theta_i) + \epsilon_i]$ (4) where $\omega_i = \frac{i \Delta \Omega}{M}$, where $\Delta \Omega$ is the width of the band.

- Random Directional method (RDM)
 - Same as above, single summation
 - Each frequency 1 direction across the whole spectrum
 - Directions chosen randomly from a weighting function
 - Less sensitive to discretization

Methods of directional wave generation: SSM,RDM

Same results for finer discretization SSM: $\Delta f = 1/8192$ RDM: $\Delta f = 1/4096$

All methods give same results for: $\frac{1}{\Delta f} \rightarrow 0$

Directional analysis: input data

• σ_{θ} =20°, 20 seeds x 1024 s

90

- calculations based upon the EMEP
- comparisons between various input data

1.4

Directional analysis: methods

- σ_{θ} =20°, 20 seeds x 1024 s
- calculations based upon η ,u,v
- comparisons between various analysis methods

Directional analysis: sea-state

Comparisons to laboratory data (H_s =10m, $\frac{1}{2}H_s k_p$ =0.081)

• σ_{θ} =15°

• calculated using the EMEP

input data: η,u,v

sea state generated using RDM

Imperial College

London

Directional analysis: sea-state

Comparisons to laboratory data (H_s =15.0m, $\frac{1}{2}H_s k_p$ =0.122)

• σ_{θ} =15°

• calculated using the EMEP

input data: η,u,v

sea state generated using RDM

Imperial College

London

Directional analysis: sea-state

Comparisons to laboratory data (H_s =20.0m, $\frac{1}{2}H_s k_p$ =0.163)

• σ_{θ} =15°

• calculated using the EMEP

• input data: η ,u,v

• sea state generated using RDM

Imperial College

London

Directional analysis: alternative method London

- comparisons to laboratory data
- VRF averaged over 20 x 3-hour seeds for each sea state

Imperial College

• changes with H_s

Velocity reduction factor (VRF)

- Comparisons to laboratory data (H_s =10m, σ_{θ} =15°, $\frac{1}{2}H_s k_p$ =0.081)
- VRF calculated for individual waves
- Plotted in terms of the normalised crest elevation, η_c/η_{cmax}

Velocity reduction factor (VRF)

- Comparisons to laboratory data (H_s =15m, σ_{θ} =15°, $\frac{1}{2}H_s k_p$ =0.122)
- VRF calculated for individual waves
- Plotted in terms of the normalised crest elevation, η_c/η_{cmax}

Velocity reduction factor (VRF)

- Comparisons to laboratory data (H_s =20m, σ_{θ} =15°, $\frac{1}{2}H_s k_p$ =0.163)
- VRF calculated for individual waves
- Plotted in terms of the normalised crest elevation, η_c/η_{cmax}

Concluding remarks

- Preferred method of directional wave generation: RDM
 - Computationally efficient
 - Ergodic
 - Easy to implement
- Directional spreading decreases in steeper sea-states
- Large individual waves are less directionally spread
- Results agree with experimental and numerical studies (e.g. Johannessen & Swan, 2001 & 2003; Adcock, et al. 2012 & 2015)
- Extension to intermediate and shallow water depths through LoWiSh JIP (currently restricted)
- Part of results available in Proc. Royal Society:

"A laboratory study of nonlinear changes in the directionality of extreme seas" (2017), M.Latheef, C.Swan, J.Spinneken

Thank you for your attention!

Short-term distribution of crest heights

- Effects beyond O(a²k²)
- Both in field data (North Sea) and laboratory data (ICL)

Directional analysis: Generation method

- σ_θ=20°
- calculations based upon the EMEP
- comparisons between different methods of directional simulation

 σ_{θ} vs. f/f_{p}

Directional spreading function, DSF

Directional spectrum

Given the frequency spectrum, $S_{\eta\eta}(\omega)$, the directional spectrum is: $F(\omega, \theta) = S_{\eta\eta}(\omega)D(\omega, \theta)$,

where $D(\omega, \theta)$ is the directional spreading function (DSF).

In terms of Fourrier series:

 $D(\omega,\theta) = \frac{1}{\pi} \left\{ \frac{1}{2} + \sum_{n=1}^{\infty} A_n(\omega) \cos n\theta + B_n(\omega) \sin n\theta \right\},$ (1) where $A_n(\omega) = \int_{-\pi}^{\pi} D(\omega,\theta) \cos n\theta$ and $B_n(\omega) = \int_{-\pi}^{\pi} D(\omega,\theta) \sin n\theta$

In this study: Gaussian DSF - frequency independent

$$D(\omega,\theta) = \frac{A}{\sigma_{\theta\sqrt{2\pi}}} e^{\left[-\frac{(\theta-\theta_m)^2}{2\sigma_{\theta}^2}\right]}$$
(2)

with σ_{θ} the standard deviation and θ_m the mean wave direction

RMS spreading: $\sigma_{\theta} = \sigma_1(\omega) = \sqrt{2[1 - \sqrt{A_1^2(\omega) + B_1^2(\omega)}]}$

Earlier work:

- Numerical calculations of focused waves (spectral model BST)
- Local reduction in directional spreading
- Supporting laboratory data (Johannessen & Swan, 2001 & 2003)

