

### Modeling the North West European Shelf using Delft3D Flexible Mesh

2nd JCOMM Scientific and Technical Symposium on Storm Surges, 8-13 Nov. 2015, Key West, USA; **Firmijn Zijl**  Modelling the North West European Shelf using Delft3D Flexible Mesh

- Background; Dutch Continental Shelf Model version 6 (DCSMv6)
- Comparsion result HIRLAM vs ECMWF
- Flexible Mesh Grid optimization
- Towards a new 3D transport model for the North Sea ...





### Real-time forecasting in The Netherlands

#### Real-time water level forecasting in the Netherlands

- •Need for accurate, real-time operational water level forecasting
- •Water-level forecasts at stations along the Dutch coast are provided every 6 h, with a 48-hour lead time.
- After the November 2006 All Saints storm it was decided that further improvements in model framework were required
- Decision to completely redesign the operational model
- New generation model is part of a comprehensive development to upgrade the operational forecasting system for the North Sea

:ral significant wave height) in m source : swan\_dcsm 06:00:00 analysis: 2011-08-07 00:00:00 ion











# DCSMv6 - model setup



( A descent

### DCSMv6 (model grid and bathymetry

#### Model setup - computational grid

- Increased spatial coverage
- Uniform cell size of 1.5' (1/40°) in east-west direction and 1.0' (1/60°) in north-south direction (~nautical mile)
- Around 10<sup>6</sup> active grid cells
- With a computational time step of 2 minutes, a 1 day simulation takes approximately 5 minutes on 12 computational cores

#### Model setup – bathymetry

- Initially based on NOOS gridded bathymetry data set, supplemented by ETOPO2
- Changes made during calibration



### Model setup (boundary forcing)

#### Model setup - boundary forcing

- Open boundary with 205 sections
- Distinction made between 2 components of the water level elevation:
- (1)Tide (38 constituents)

(2)Surge, as an inverse barometer correction (IBC) based on time and space varying pressure fields

#### Model setup - meteo forcing

- Wind speed and air pressure from HIRLAM NWP model provided (operationally) by KNMI
- Sea surface roughness is calculated using the Charnock relation (Charnock parameter 0.025)
- Tide Generating Forces (TGF) included



### Calibration: DCSMv6 (against satelite altimeter data)





M2 Phase

## DCSMv6 – calibration

# OpenDA-DUD experiment setup and parameters

- Parameters related to prescription at the open boundary excluded from the optimization problem
- Tidal error introduced during the tidal propagation
- Reduction of uncertainty in bottom friction coefficient and bathymetry
- Control parameters defined between measurement locations
- Multiple optimization runs, with increasing length and number of parameters
  - Long period to account for non-stationarity of tidal amplitudes and phases
  - Large area to account for spatial interaction

•Final experiment had 200 control parameters, 12 months, ~100 observations locations



### Model calibration

#### Calibration and validation using tide gauge data at >120 locations



Green dots: radar altimeter cross-over locations Red dots: in-situ tide-gauge locations



## Results: Dutch coastal tide gauge stations

#### Goodness-of-Fit (in cm) for 13 Dutch coastal stations, 2007

|                          | RMSE<br>(tide) | RMSE<br>(surge) | RMSE<br>(total) | RMSE<br>(high water) | RMSE<br>(low water) |
|--------------------------|----------------|-----------------|-----------------|----------------------|---------------------|
| DCSMv5                   | 10.7           | 7.7             | 13.1            | 11.3                 | 11.0                |
| DCSMv6 (Regular<br>mesh) | 3.8            | 5.9             | 7.0             | 6.6                  | 7.1                 |
|                          | -64%           | -23%            | -47%            | -42%                 | -35%                |

(harmonic analysis with 118 constituents)



### DCSMv6 - results

Water level elevation [m]









y=1.009x+0.000, y=1.009x, p=0.99





### DCSMv6 – Hoek van Holland; HIRLAM vs ECMWF

#### Hirlam

#### **ECMWF**



14 september 2015

|               | RMSE<br>(tide) | RMSE<br>(surge) | RMSE<br>(total) | RMSE<br>(high water) | RMSE<br>(low water) |
|---------------|----------------|-----------------|-----------------|----------------------|---------------------|
| DCSMv6-Hirlam | 4.6            | 5.9             | 7.3             | 6.7                  | 7.0                 |
| DCSMv6-ECMWF  | 4.5            | 5.8             | 7.2             | 6.6                  | 6.8                 |

#### skew surges from 2013-01 to 2015-06

|               | all skew surges |      | 1% highest skew surges |      | 0.2% highest skew surges |  |      |
|---------------|-----------------|------|------------------------|------|--------------------------|--|------|
| Model         | bias            | RMSE | bias                   | RMSE | bias RM                  |  | RMSE |
| DCSMv6-Hirlam | 1.4             | 6.2  | 4.7                    | 14.6 | 15.7                     |  | 19.1 |
| DCSMv6-ECMWF  | 1.4             | 6.1  | 4.4                    | 12.4 | 11.0                     |  | 13.6 |

-29%

**Deltares** 

14 september 2015

# **VERSION** with Flexible Mesh



### Local grid coarsening

Computational net DCSMv6 FM Computational net DCSMv6 FM (detail transition fine to coarse) 62.5 60.0 48 57.5 400 m contour 55.0 Lattitude Lattitude 100 m contour 52.5 50.0 47.5 46 45.0 -15.0 -12.5 -10.0 -7.5 12.5 15.0 -5.0 -2.5 0.0 2.5 5.0 10.0 -7 7.5 -8 -6 -5 Longitude Longitude

Red:original grid sizeBlue:2x coarsened

4x coarsened

Green:

- # net nodes from 860,000 to 358,000 (factor 2.5)
- # net links from 1,700,000 to 752,000 (factor 2.25)

## **Grid optimization**

#### Numerical time step

- •Numerical accuracy is determined by the (wave) Courant number
- •As this is proportional to the square root of the depth, with a uniform grid size, the deepest cells are limiting the computational time step.
- •Further increase in computational speed by increasing maximum allowed time step from 2 to 3 minutes

With the upgraded flexible resolution grid and increased time step, the model is roughly speaking 3-4 times faster (on one core)

Goodness-of-Fit (in cm) - 13 Dutch coastal stations - entire year of 2007)

|                        | RMSE<br>(tide) | RMSE<br>(surge) | RMSE<br>(total) |
|------------------------|----------------|-----------------|-----------------|
| Regular mesh           | 4.1            | 5.9             | 7.2             |
| Delft3D FM             | 4.9            | 6.0             | 7.7             |
| Delft3D FM (coarsened) | 5.2            | 6.0             | 8.0             |