14th International Workshop on Wave Hindcasting and Forecasting – Key West

NACCS: Joint Probability Analysis of Coastal Storm Hazards

Jeffrey A. Melby, PhD

Norberto C. Nadal-Caraballo, PhD

US Army Engineer R&D Center Coastal and Hydraulics Laboratory 8 Nov 2015 Norberto.C.Nadal-Caraballo@usace.army.mil

US Army Corps of Engineers.

Overview

Overview

Joint Probability Method

- Joint Probability Method with Optimal Sampling (JPM-OS) is standard-of-practice for quantifying flooding hazards of hurricaneprone coastal regions
- Overcomes main limitation of underrepresentation of TCs in historical water level observations
- Some JPM studies performed post-Katrina
 - Resio et al. IPET/LACPR (2007/2009)
 - FEMA Mississippi Coastal Analysis Project (2008)
 - North Carolina Coastal Flood Analysis System (2008)
 - USACE/FEMA Texas Coastal Study (2011)
 - USACE/FEMA Region III Storm Surge Study (2013)
 - FEMA Region II JPA (2014)
 - USACE North Atlantic Coast Comprehensive Study (2015)

Joint Probability Analysis

4

Joint Probability Analysis

Tropical Storms (Resio et al. 2009)

JPM integral
$$\lambda_{r(\hat{x})>r} = \lambda \int P[r(\hat{x}) > r | \hat{x}] f_{\hat{x}}(\hat{x}) d\hat{x}$$

 $\approx \sum_{i}^{n} \lambda_{i} P[r(\hat{x}) > r | \hat{x}]$

 $\lambda_{r(\hat{x})>r} = AEP$ of storm response r for forcing vector \hat{x} $P[r(\hat{x})>r|\hat{x}] = conditional probability that storm <math>i$ with parameters \hat{x}_i generates a response larger than r. $\lambda_i = mean annual storm rate. f_{\hat{x}}(\hat{x}) = joint pdf of \hat{x}$ Forcing vector \hat{x}_i includes:

- Track location (x_o)
- Heading direction (θ)
- Central pressure deficit (ΔP)
- Radius of maximum winds (R_{max})
- Translational speed (V_t)

Extratropical Storms (Nadal-Caraballo, Melby and Ebersole 2012)

Fit POT values with GPD using MLM and high frequency cutoff using Q-Q optimization

Historical Tropical Cyclones (TC)

- Sampling from NOAA HURDAT database
- 1938 2013 period
- TC intensities equal or greater than $\Delta P = 25$ hPa (988 hPa)
- 90 TCs affecting the North Atlantic Coast region
- Subset of 45 TCs (landfalling and bypassing within 300 km)

Historical Extra-tropical Cyclones (XC)

- Sampling from NOAA CO-OPS non-tidal residuals (NTD)
- 1938 2013 period
- Data from 23 gages with 30+ years of hourly observations
- Statistical analysis is done separate from TCs; probabilities are combined in the end

Storm Recurrence Rate

7

Storm Recurrence Rate (SRR)

- # storms/year/km
- High intensity TCs: $\Delta P \ge 48$ hPa
- Low intensity TCs: $28 \le \Delta P < 48$ hPa

Gaussian Kernel Function

- Chouinard and Liu (1997)
- Distance-weighted properties
 - ► Distance 0 km weight = 1.0
 - Distance 200 km weight = 0.6
 - ► Distance 800 km weight ~ 0.0

JPM Discretization

Parameterization of Tropical Cyclones

Non-Exceedance Probability Distributions

Hybrid Discretization: Uniform: θ , ΔP ; Bayesian Quadrature: R_{max} , V_f

- 1050 Synthetic Tropical Storms
- 130 unique master tracks, average 8 storms/track
- Latitude-dependent along-track parameter variations: ΔP, R_{max}, Holland B
- Within or near historical parameter space (e.g. min $\Delta P = 98$ mb

for Isabel with 915 mb)

 C_p : 915 – 985 mb, V_f : 12 – 88 km/hr R_{max} : 25 – 174 km

Numerical Simulation

Meteorological modeling of synthetic TCs Wind and Pressure Fields (OWI 2014)

CSTORM-MS (WAM, ADCIRC-STWAVE)

10

100 Historical Extratropical Storms <u>1050 Synthetic Tropical Storms</u> **1150 Total Storm Population**

Model Simulations: 1150 Storms x 3 conditions:

- Surge and wave only (base)
 - Expectation is linear superposition with uncertainty
 - Also modeled 96 random tide realizations
 - Computed statistics of total water level
- Surge and wave and tide
- Surge and wave and tide and sea level change

Total Storms simulated: 3450

Response Probabilities

Storm probability mass = $f(SRR, f_{\hat{x}}(\hat{x}), track spacing)$

Discrete integration of CCDF is computed for a given response bin by summing storm probability masses for storms that produced a larger response

Combined Probabilities P(CC) = P(TC) + P(XC)

Uncertainty

Epistemic uncertainty of response (σ_r)

- Expressed as confidence limits (e.g., NACCS approach):
 - $CL = \mu_r + z\sigma_r$, where CL = confidence limits, μ_r = mean value of a given TC response, and *z* = Z-score.

$$\sigma_{\varepsilon} = \sqrt{\sum_{i}^{n} \sigma_{i}^{2}}$$

Uncertainty	FEMA 2008 (m)	USACE 2011 (m)	FEMA 2014 (m)	NACCS (m)
Hydrodynamic modeling	0.23	0.53 to 0.76	0.39	0.48
Meteorological modeling	0.36	0.07 to 0.30	0.54	0.38
Storm track variation	n/a	0.20 [*] × wave setup	n/a	0.25
Holland B	$0.15^* \times surge elevation$	$0.15^* \times surge elevation$	n/a	0.15 [*] × surge elevation
Astronomical tide	0.20	n/a	n/a	variable

Uncertainty

Nonlinear Residuals (NLR) due to Tides and SLC

JP of Storm Responses

Final Product

- Approximately 19,000 output locations
- Peaks and time series files for all storms in HDF5 format
- Thirteen (13) Average Recurrence Interval (ARI) values:
 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000 yrs
- Associated Annual Exceedance Probability
- Confidence Limits : 84%, 90%, 95%, 98%
- Nonlinear residuals
- Storm relative probabilities
- Measurements for storms and associated GPD ARI
- Grids, model inputs, reports, Matlab codes.

+ A https://chs.erdc.dren.mil/default.aspx

¬ C Q Search

🛊 🖻 🛡 🖡 🏠 🦧 Z 😕 🚅

🙆 Most Visited 🧶 Getting Started 📙 Favorites 🗌 Coastal Hazards Syste... 🌸 NWSradar 🐰 Google 🗋 ezHPC 📕 Hurricane Spaghetti 🥸 NHC 🕎 nowCOAST 🌆 nowCOT Track 😵 CSC Track Plot 🗍 TC_VITALS 🕥 MVN Gages 🗌 UsableStats 🔩 CBI 🥮 AccuWeather 🛐 Briefing.com

_ **—** X

Coastal Hazards System

Regional High-Fidelity Modeling Studies

- NACCS approach was built around probabilistic modeling with highfidelity numerical simulation
- Selected tropical storms using JPM-OS-BQ method
- Selected extratropical storms using POT from observations
- Computed joint probability of responses
- Computed epistemic uncertainties as confidence limits
- Stored and distributing peaks, time series, statistics in Coastal Hazards System

Thanks for listening...Questions?

