

Wave-ice interactions in wave models like WW3

Will Perrie¹, Hui Shen^{1,2}, Mike Meylan³, Bash Toulany¹ 1Bedford Institute of Oceanography, Dartmouth NS 2Inst. of Oceanology, China Academy of Sciences, Qingdao China 3University of Newcastle, Australia

1. Motivation Waves in the marginal ice zone

Motivation
 Measuring ocean waves
 Detecting ice
 Waves in ice
 Wave-ice interactions
 " " the model
 Sea state boundary layer expt
 Summary

Waves in the operational Halifax Harbour wave forecasts

Wave forecast assuming <u>no</u> ice at 00 UTC on Mar 3 2015

Wave forecast <u>assuming</u> ice at 00 UTC on Mar 3 2015

 \rightarrow Note the change in scale!

Sig. Wave Heights (contours), Wave Directions (dir. of vectors), Wave Periods (length of vectors) At 2015030303

2. Ocean waves by fully polarimetric SAR

Figure 1. A C band, vertically (VV) polarized, image of area northwest of Morro Bay, CA acquired by RADAR-SAT-2 at 02:09 UTC on 25 February 2009. Further details are given in Tables 1 and 2. RADARSAT-2 Data and Products[®] MacDonald, Dettwiler and Associates Ltd. (2008–2009) – All Rights Reserved.

Figure 3. Corresponding 512 × 512 pixel size images of area northwest of Morro Bay, CA selected from SAR image in Figure 1, at 02:09 UTC on 25 February 2009, showing (a) horizontal (HH) polarization, (b) vertical polarization, (c) linear polarization, (d) wave slope image in the azimuth direction, and (e) wave slope image in the range direction. NDBC directional wave buoy (46028) is colocated to these images.

Wave retrievals from fully polarimetric SAR

Linear modulation transfer function -

$\Delta\sigma_{_{\scriptscriptstyle VV}}$	$\Delta\sigma_{_{hh}}$ _	$8 \tan \theta$	$\partial \xi$
$\overline{\sigma}_{_{\scriptscriptstyle VV}}$	$\overline{\sigma}_{_{hh}}$ –	$\frac{1}{1+\tan^2\theta}$	∂x
$\Delta\sigma_{\scriptscriptstyle \psi\psi}$	$\Delta\sigma_{_{\scriptscriptstyle VV}}$	$-\Lambda \frac{\partial \xi}{\partial \xi} + B$	$\partial \xi$
$\overline{\sigma}_{\scriptscriptstyle \psi\psi}$	$\overline{\sigma}_{_{VV}}$	$-A\frac{\partial x}{\partial x} + D$	∂y

$$\sigma(0,\psi) = \frac{1}{4}(\sigma_{hh} + \sigma_{vv}) \cdot \left[1 + \cos^2(2\psi)\right] + \frac{1}{2}(\sigma_{hh} - \sigma_{vv})\cos(2\psi) + \sigma_{hv} + \frac{1}{2}\Re(\sigma_{hhvv})\sin^2(2\psi)$$

 $\frac{\partial \xi}{\partial x}$ wave slope in range direction

 $\sigma_{_{vv}}$

 $\sigma_{\scriptscriptstyle hv}$

 $\sigma_{{}_{hh}}$

 $\partial \xi / \partial y$ wave slope in azimuth direction

radar observed backscatter cross section in co- and cross-polarizations

Zhang, B., W. Perrie, and Y. He (2010), Validation of RADARSAT-2 fully polarimetric SAR measurements of Ocean surface waves, *J. Geophys. Res.*, 115, C06031, doi:10.1029/2009JC005887.

Figure 5. Wave slope spectrum from C band fully polarimetric SAR image of area northwest of Morro Bay, CA (Figure 1) acquired at 02:09 UTC on 25 February 2009.

Figure 7. Directional wave spectrum measured by NDBC buoy (46028) colocating with the SAR image in Figure 1, at 01:50 UTC on 25 February 2009.

Table 3. Wave Parameters Extracted From the Six RADARSAT-2 Fully Polarimetric SAR (Fine Quad-Polarization Mode) Images in Table 2 Compared to Corresponding Wave Parameters Provided by NDBC Buoy Measurements

Parameter	Image ID	Buoy ID	SAR	Buc	ру
Mayo poriod	1	46005	15.57	16.00	cocondo
vvave penou	2	46089	12.54	12.90	Seconds
	3	46028	12.48	12.12	
	4	46071	11.51	11.00	
	5	46029	12.89	12.90	
	6	46029	11.15	11.00	_
Move length	1	46005	378.3	399.5	in at a ra
vvave length	2	46089	245.2	259.7	meters
	3	46028	242.9	229.2	
	4	46071	200.7	100.0	
	2	46029	102.0	228.8	
	0	46029	261.1	240.0	-
Wave direction	2	46089	251.0	268.0	dogroop
	3	46028	311.5	310.0	uegrees
	4	46071	253.3	270.0	
	5	46029	282.4	285.0	
	6	46029	299.0	307.0	
		46005	2.91	3.10	
Significant wave	Hs	46089	2.67	2.51	meters
		46028	2.74	2.88	
	4	46071	4.08	4.10	
	5	46029	2.98	3.44	
	6	46029	2.08	2.50	
PMS clope	1	46005	0.88	0.89	
KING Slope	2	46089	1.25	1.11	
	3	46028	1.29	1.44	
	4	46071	2.26	2.49	
	5	46029	1.32	1.52	
	6	46029	1.23	1.52	

3. Arctic ice Ice patterns in 2013-02-06 in east coast of Greenland

What about the marginal ice zone ?

Winds and waves off Greenland in 2013

Competing ocean surface features

Subset images from the VV mode quad-pol SAR captured on July 24, 2011

Oil spill detection: Li et al., 2015 JSTARS Zhang et al., 2011: GRL

Shen et al. 2013

A new ice detection scheme from SAR

4. Waves in ice and open water

Winds

Wave retrieval in MIZ water

Wave analysis from SAR

Jason-2 altimeter Hs wave heights on SAR

~30m/s winds \rightarrow swell +waves F

SAR image segmentation

Partition scheme of the ScanSAR image; each sub-image box is 512 by 512 pixels.

10000 0		100	00	200	0	300	0	4000		5000		6000		7000		8000		9000		10000
	19,1	19,2	19,3	19,4	19,5	19,6	19,7	19,8	19,9	19,10	19,11	19,12	19,13	19,14	19,15	19,16	19,17	19,18	19,19	19,20
9000	18,1	18,2	18,3	18,4	18,5	18,6	18,7	18,8	18,9	18,10	18,11	18,12	18,13	18,14	18,15	18,16	18,17	18,18	18,19	18,20
	17,1	17,2	17,3	17,4	17,5	17,6	17,7	17,8	17,9	17,10	17,11	17,12	17,13	17,14	17,15	17,16	17,17	17,18	17,19	17,20
8000	16,1	16,2	16,3	16,4	16,5	16,6	16,7	16,8	16,9	16,10	16,11	16,12	16,13	16,14	16,15	16,16	16,17	16,18	16,19	16,20
	15,1	15,2	15,3	15,4	15,5	15,6	15,7	15,8	15,9	15,10	15,11	15,12	15,13	15,14	15,15	15,16	15,17	15,18	15,19	15,20
7000	14,1	14,2	14,3	14,4	14,5	14,6	14,7	14,8	14,9	14,10	14,11	14,12	14,13	14,14	14,15	14,16	14,17	14,18	14,19	14,20
	13,1	13,2	13,3	13,4	13,5	13,6	13,7	13,8	13,9	13,10	13,11	13,12	13,13	13,14	13,15	13,16	13,17	13,18	13,19	13,20
6000	12,1	12,2	12,3	12,4	12,5	12,6	12,7	12,8	12,9	12,10	12,11	12,12	12,13	12,14	12,15	12,16	12,17	12,18	12,19	12,20
	11,1	11,2	11,3	11,4	11,5	11,6	11,7	11,8	11,9	11,10	11,11	11,12	11,13	11,14	11,15	11,16	11,17	11,18	11,19	11,20
5000	10,1	10,2	10,3	10,4	10,5	10,6	10,7	10,8	10,9	10,10	10,11	10,12	10,13	10,14	10,15	10,16	10,17	10,18	10,19	10,20
	9,1	9,2	9,3	9,4	9,5	9,6	9,7	9,8	9,9	9,10	9,11	9,12	9,13	9,14	9,15	9,16	9,17	9,18	9,19	9,20
4000	8,1	8,2	8,3	8,4	8,5	8,6	8,7	8,8	8,9	8,10	8,11	8,12	8,13	8,14	8,15	8,16	8,17	8,18	8,19	8,20
	7,1	7,2	7,3	7,4	7,5	7,6	7,7	7,8	7,9	7,10	7,11	7,12	7,13	7,14	7,15	7,16	7,17	7,18	7,19	7,20
3000	6,1	6,2	6,3	6,4	6,5	6,6	6,7	6,8	6,9	6,10	6,11	6,12	6,13	6,14	6,15	6,16	6,17	6,18	6,19	6,20
2000	5,1	5,2	5,3	5,4	5,5	5,6	5,7	5,8	5,9	5,10	5,11	5,12	5,13	5,14	5,15	5,16	5,17	5,18	5,19	5,20
	4,1	4,2	4,3	4,4	4,5	4,6	4,7	4,8	4,9	4,10	4,11	4,12	4,13	4,14	4,15	4,16	4,17	4,18	4,19	4,20
1000	3,1	3.2	3,3	3,4	3,5	3,6	3,7	3,8	3,9	3,10	3,11	3,12	3,13	3,14	3,15	3,16	3,17	3,18	3,19	3,20
1000	2,1	2.2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	2,10	2,11	2,12	2,13	2,14	2,15	2,16	2,17	2,18	2,19	2,20
Ĭ	1,1	1,2	1,3	1,4	1,5	1,6	1.7	1,8	1,9	1,10	1,11	1,12	1,13	1,14	1,15	1,16	1,17	1,18	1,19	1,20

Snapshots and spectra of sub-images

Image spectra from SAR snapshoot

Image spectra from the ScanSAR for:(a) open water 350 km from the MIZ(b) 25 km within the MIZ(c) open water 50 km from the MIZ.

 \rightarrow Shortening of the waves in the MIZ

Jason-2 significant wave heights on SAR

a) Normalized image spectrum density on transect, reordered, with respect to x-axis,
b) based on distance to the ice edge; +x-axis = open water, - x-axis = in ice
c) last x-axis values corresponds to box number 7 where waves emerge from MIZ ice.

Observed wave attenuation

attenuation rate retrieved from SAR, indicated by symbol 🛧

5. How do waves interact with sea ice?

 $\frac{\partial E(f,\vartheta)}{\partial t} + \vec{C}_g \cdot \nabla E(f,\vartheta) = (S_{in} + S_{ds})(1 - F_{ice}) + S_{nl} + S_{ice}$

Ice fraction

Wwave-ice interactions Wind input Wave-wave interactions

What is the drag coefficient? Cd?

Dissipation due to ice:

$$S(f_m, \vartheta_n)_{ice} = E(f_m, \vartheta_j) T_{F_{ice}}^{nj}$$

And

- 1) transformation tensor, $T_{F_i}^{ij}$, is expressed
- 2) scattering tensor, $D(\vartheta_{ij})$, for ice floe motions; heave, surge, and pitch
- → This can be re-formulated...
 → As a linear Boltzman equation for MIZ wave scattering (Meylan and Masson 2006)!

... as a Boltzmann scattering equation, $\frac{\partial E(f,\vartheta)}{\partial t} + \vec{C}_g \cdot \nabla E(f,\vartheta) = (S_{in} + S_{ds})(1 - F_{ice}) + S_{nl} + \int_0^{2\pi} \frac{F_{ice}}{A_f} |D(\vartheta - \vartheta'|^2 d\vartheta')|^2 d\vartheta'$

$$\left(\int_{0}^{2\pi} \frac{F_{ice}}{A_{f}} |D(\vartheta - \vartheta')|^{2} d\vartheta' + \sigma_{a} \frac{F_{ice}}{A_{f}}\right) E(f, \vartheta)$$

- > S is scattering density for spectral energy $E(f, \vartheta)$, or the scattering kernel:
- > AND S is written in terms of scattering tensor D,

$$\succ S(\vartheta, \vartheta') = \frac{F_{ice}}{A_f} |D(\vartheta - \vartheta')|^2$$

> where A_f is the average surface area of the ice floes > σ_a is absorption cross-section,

6. Wave-ice interactions model

Computer test: winds 20m/s at 45° to northeast, 10m ice floes 1m thick

Wave-ice interactions model: Perrie and Hu, 1996 JPO WHAT is the dispersion relation in the MIZ for waves?

Fox + Squire '91

$$\kappa \tan \kappa H = -\frac{\rho \omega^2}{L \kappa^4 + \rho g - m \omega^2}$$

Radarsat-2 SAR: 1184 images were processed to guide the cruise in Arctic ice: August (tests, 18), Sept (349), Oct (780), Nov (37), with about 500 images sent to collocate with the cruise. Value ~ \$5M.

J. Thomson et al. 2015, draft cruise report...

WaveBuoy 02: an example of the heavy icing during the deployment

Big waves amongst the pancakes

8. Summary: to do list

<u>1. Wave model</u>: Transition the wave-ice interactions methodology to wave forecast model, WW3: pre-calculate the ice scattering kernel.
 <u>2. Elastic ice floes</u>: Use the "elastic ice plate model" for ice floes + elastic scattering kernel formulation of Meylan and Masson (2006).
 <u>3. Multiple scattering</u>: Model effect of multiple scattering and relatively dense floe packing, incorporating approach of Squire et al.
 <u>4. Floe breaking</u>: Setting a floe breaking criteria based on significant wave height and modify the scattering kernel as part of the time-stepping.
 <u>5. Academic tests</u>: Do academic tests with wind forcing and simple geometry ocean topography, to get basic model behavior.
 6. Validation: Check with *in situ* attenuation rates, and collocated satellite data

collected from the field experiments: BLSS, MIZ, R/V Oden cruise

Summary

- > RADARSAT-2 SAR can measure long waves ~200m
- > Also good ability for wind fields
- Ice information on open water, vs. MIZ
- Still need to map SAR image backscatter to ice types, via classification scheme
- Plan and complete the implementation in WW3