Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model

Victor Alari, **Øyvind Breivik**, Joanna Staneva, Jean-Raymond Bidlot, Kristian Mogensen and Peter A.E.M. Janssen

> 14TH INTERNATIONAL WORKSHOP ON WAVE HINDCASTING AND FORECASTING/5th COASTAL HAZARDS SYMPOSIUM, Key West, Florida, USA, Nov 8-13, 2015

Centre for Materials and Coastal Research

Outline

- Motivation and objective
- Model setup for the North Sea-Baltic Sea
- Physical processes forming wave-circulation interaction
- Wave impact to temperature
- Conclusions

- Traditionally ocean models and wind wave models have been applied separately.
- Separating wave and ocean models is pragmatic, but leads to violation of energy and momentum conservation.
- During EU-FP7 project MyWave a coupled global scale wavecirculation model was developed (Breivik *et al*, 2015).
- Applying the coupled model to World Ocean, a reduction of bias between modelled and measured SST was noted.
- Here we demonstrate the importance of coupling on regional scales and focus on the Baltic Sea.

Model setup (1): geographical view

Blue solid lines – model open boundaries

Blue dashed box – our analysis area

Red dashed lines – vertical transects

Model setup (2) : key information

Centre for Materials and Coastal Research

Parameter/Model	NEMO (version 3.4)	WAM (version CY40R3)
Modelling period	01.10.2012-30.09.2013	Switched on at 01.05.2013
Horizontal grid	2 nautical miles covering North Sea and	Same horizontal grid. Spectral resolution:
	Baltic Sea	24 directions and 25 frequencies
Vertical grid	56 z layers	N/A
Integration timestep(s)	10 s for barotropic part; 180 s for baroclinic	30 s
	part	
Initial field	Janssen et al. (1999) climatology for T & S	Coldstart
Boundary condition	OSU tides, Janssen et al. (1999)	No
	climatological periodic boundary	
Atmospheric forcing	German Weather Service (DWD), 1 h.	Same source, but only wind components
	Meridional and zonal wind speed;	
	shortwave and longwave radiation; air	
	temperature; humidity; air pressure	
Vertical diffusion scheme	Generic Length Scale (k- ε), Umlauf and	N/A
	Burchard (2003)	
	LIM2	No ice, as wave model input was used starting from May

Motivation and objective

Model setup for the North Sea-Baltic Sea

Physical processes forming wave-circulation interaction

Wave impact to temperature

Conclusions

Physical processes forming wave-circulation interaction (2): **ocean side stress**

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

$$\tau_{\rm oc} = \tau_{\rm a} - \rho_{\rm w} g \int_0^{2\pi} \int_0^\infty \frac{\mathbf{k}}{\omega} (S_{\rm in} + S_{\rm ds}) \, \mathrm{d}\omega \, \mathrm{d}\theta$$

$$\frac{\partial U}{\partial t} - fV = -gH\frac{\partial\xi}{\partial x} + \tau_{ocx} - \tau_{xb}$$

Physical processes forming wave-circulation interaction (3): **storm on 22 July 2013**

c) Normalized momentum flux to ocean

 $\frac{\mathsf{D}\mathbf{u}}{\mathsf{D}t} = -\frac{1}{\rho}\nabla p + (\mathbf{u} + \mathbf{v}_{\mathsf{s}}) \times f\hat{\mathbf{z}} + \frac{1}{\rho}\frac{\partial \tau}{\partial z}.$

In uncoupled NEMO, *alpha* is constant=100

$$K_q \frac{\partial q^2}{\partial z} = 2\alpha_{\rm CB} u_\tau^3, \qquad z = 0.$$

Motivation and objective

Model setup for the North Sea-Baltic Sea

Physical processes forming wave-circulation interaction

Wave impact to temperature

Conclusions

Simulation name	Description of simulation	
CTRL	Control simulation, without wave model	
ALLWAVE	All three wave processes included	
TAUOC	Sea state dependent momentum flux included	
BREAK	Sea state dependent energy flux included only	
STCOR	Stokes-Coriolis forcing included only	

Results (1): Baltic Proper, water temperature

Time-depth profiles of measured temperature, control run (CTRL) and the all-wave processes (ALLWAVE) run at a buoy station in Baltic Proper

Results (2): BIAS of SST

Centre for Materials and Coastal Research

Bias (model mean minus mean of measurements) of simulated SST with respect to OSTIA data in the Baltic Proper.

Results (3): Impact of waves to SST

Sea surface temperature differences between ALLWAVE and CTRL averaged over a 3month period, from 01 June 2013 to 31 August 2013.

Results (4): Impact of waves to bottom temperature

Results (5): Impact of waves, vertical/transect

Results (6): Impact of waves, vertical/transect

- The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM.
- The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's.
- In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux.
- During the summer the wave induced water temperature changes were up to 1 °C.