TSA - the Two-Scale Approximation in WW3

Will Perrie and Bash Toulany Bedford Institute of Oceanography

What are the objectives?

- 1. Replace DIA Discrete Interaction Approximation in WW3
- 2. Implement TSA into WW3 using an efficient accurate new formulation for <u>quadruplet</u> (nonlinear) wave-wave interactions
- 3. Tests including: waves swell, turning winds, shallow water...
- 4. Tests for real <u>North Atlantic storms</u>

Wave generation and growth...

a balance equation ...

$$\frac{\partial E(f,\theta)}{\partial t} = -\vec{c}_g \cdot \vec{\nabla} E(f,\theta) + \sum_k S_k(k,\theta)$$

where source terms are:

- \vec{c}_g = group velocity
- S_{in} = wind input
- S_{ds} = wave dissipation

 S_{nl} = nonlinear transfer due to wave-wave interactions

$S_{nl} \Rightarrow$ full Boltzmann Integral - FBI

For internal transfer of wave action (or energy) in the spectrum at n_1 (e.g. at \mathbf{k}_1) via wave-wave interactions by \mathbf{k}_2 , \mathbf{k}_3 , \mathbf{k}_4) - Hasselmann (1962), Zakharov (1966)

$$\frac{\partial n_1}{\partial t} \equiv S_{nl} = \int \int T(\mathbf{k}_1, \mathbf{k}_3) \, d\mathbf{k}_3 \quad \text{where}$$

$$T(\mathbf{k}_{1}, \mathbf{k}_{3}) = 2 \oint [n_{1}n_{3}(n_{4} - n_{2}) + n_{2}n_{4}(n_{3} - n_{1})]C(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4})\theta(|\mathbf{k}_{1} - \mathbf{k}_{4}| - |\mathbf{k}_{1} - \mathbf{k}_{3}|)|\partial W/\partial n|^{-1} ds,$$

TSA – Two-Scale Approximation

 $n_i = \overline{n_i}_{[\text{broad-scale}]} + \overline{n_i}_{[\text{local-scale}]}; i=1,2,3,4$

<u>Neglect</u> $n_{2 \text{ [local-scale]}}$ and $n_{4 \text{ [local-scale]}}$

[Resio and Perrie 2008; Perrie & Resio 2009]

JONSWAP sheared spectrum with Hasselmann-Mitsuyasu directional:

- (a) broad- and local-scale terms normalized by f^{-4} ,
- (b) 1-d comparison of DIA, WRT and TSA, (c) 2-d action density n_i ,
- (d) $S_{nl}(f,\theta)$ results from DIA (e) WRT (f) TSA. $f_{\rho}=0.1$, $\alpha=0.0081$, $\sigma_{A}=0.07$, $\sigma_{B}=0.09$.

-0.5005

WW3 – with 'old' ST1: fetch-limited growth

12

1-point time integration

WWM (Roland et al., 2012) w. early TSA version + <u>ST4</u> From Ardhuin et al. (2010)

WW3 (Tolman, 2009) with <u>ST2</u> From Tolman + Chalikov (1996)

1-point time integration

WWM (Roland et al., 2012) with **ST4**

<u>WW3</u> (v4.18) with <u>ST4</u>

WW3 – constant U10 – 48+hr ST4

1. Multiple spectral peaks - mTSA

Broad-scale term parameterization...? $F(k)_{Norm} = F(k) \times k^{2.5} / \beta$ [Resio&Perrie, 1989; Resio et al. 2004...]

Should be $\beta \sim 1/\Delta f \sum [F(k) \times k^{2.5}]|_{equilibrium range}$

<u>But</u> equilibrium range is hard to define when f_{p1} and f_{p2} are close...

So let $\beta = F(k) \times k^{2.5} | f_s \dots$ for the first peak \dots second etc.

1. Multiple spectral peaks - mTSA

- 1. Find the peaks; if "many" then choose the largest 2...
- 2. Fit each peak separately: f_{p1} and f_{p2}
- 3. Define a separation frequency: e.g. take the <u>mean</u>, or maybe the <u>minimum</u> in the spectrum, f_s
- 4. Make the fit for JONSWAP-type parameters for each peak: f_{ρ} , α , $\sigma \theta \gamma$

Multiple TSA

Equilibrium range problem...

- usually understood as (Resio et al., 2004) $1.5 f_p < f < 2.5 f_p$
- in practice must find at least 1 frequency bin
- this depends on the grid spacing λ where $f_{n+1} = \lambda f_n$
- require in each peak region to have enough bins so that

 $f_{equilibrium range} = \lambda^n f_{peak} \underline{or} 2 \times f_{peak}$

then: $\lambda^{n} - 0.025 < f_{equilibrium range} / f_{peak} < \lambda^{n} + 0.025$ - Otherwise TSA is not called for 2 peaks!

2. Alternate the loops

5 loops in frequency, direction and interaction locus...

$$\frac{\partial n_1}{\partial t} \equiv S_{nl} = \int \int T(\mathbf{k}_1, \mathbf{k}_3) \, d\mathbf{k}_3 \quad \text{where}$$

$$T(\mathbf{k}_{1}, \mathbf{k}_{3}) = 2 \oint [n_{1}n_{3}(n_{4} - n_{2}) + n_{2}n_{4}(n_{3} - n_{1})]C(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4})\theta(|\mathbf{k}_{1} - \mathbf{k}_{4}| - |\mathbf{k}_{1} - \mathbf{k}_{3}|)|\partial W/\partial n|^{-1} ds,$$

Do "loops", 2

- interpolate to fill frequency and angle bins - multiple \times 2, because still have original "ds" on

locus of interactions

 $\overrightarrow{k_1} + \overrightarrow{k_2} = \overrightarrow{k_3} + \overrightarrow{k_4}$ $\omega_1 + \omega_2 = \omega_3 + \omega_4$

3. TSA "zone of influence" calculation

Given (*f*,θ), the 'zone of influence' is about ± 6 frequency or angle bins, for λ in this grid...
 So the <u>cross-terms</u> in the main TSA calculation between broad-scale and local-scale are only allowed in the 'zone of influence'

 k_1 → 1 to $n_{frequency bins}$ k_3 → starts at bin of k_1 , goes to 'zone of influence', k_{zone} ; no need for more...

$$\frac{\partial n_1}{\partial t} = B + \int \int \oint N_*^3 C \left| \frac{\partial W}{\partial n} \right|^{-1} ds \, k_3 \, d\theta_3 \, dk_3$$

$$N^{3} = \hat{n}_{1}\hat{n}_{3}(\hat{n}_{4} - \hat{n}_{2}) + \hat{n}_{2}\hat{n}_{4}(\hat{n}_{3} - \hat{n}_{1}) + n'_{1}n'_{3}(n'_{4} - n'_{2}) + n'_{2}n'_{4}(n'_{3} - n'_{1}) + \hat{n}_{1}\hat{n}_{3}(n'_{4} - n'_{2}) + \hat{n}_{2}\hat{n}_{4}(n'_{3} - n'_{1}) + n'_{1}n'_{3}(\hat{n}_{4} - \hat{n}_{2}) + n'_{2}n'_{4}(\hat{n}_{3} - \hat{n}_{1}) + \hat{n}_{1}n'_{3}(\hat{n}_{4} - \hat{n}_{2}) + \hat{n}_{2}n'_{4}(\hat{n}_{3} - \hat{n}_{1}) + n'_{1}\hat{n}_{3}(\hat{n}_{4} - \hat{n}_{2}) + n'_{2}\hat{n}_{4}(\hat{n}_{3} - \hat{n}_{1}) + \hat{n}_{1}n'_{3}(n'_{4} - n'_{2}) + n'_{2}\hat{n}_{4}(n'_{3} - n'_{1}) + \hat{n}_{1}n'_{3}(n'_{4} - n'_{2}) + \hat{n}_{2}n'_{4}(n'_{3} - n'_{1}) + n'_{1}\hat{n}_{3}(n'_{4} - n'_{2}) + n'_{2}\hat{n}_{4}(n'_{3} - n'_{1})$$

To compute TSA, need grad function $|\partial W/\partial n|$, weighting functions, spectra terms ...

$$\frac{\partial n_1}{\partial t} \equiv S_{nl} = \int \int T(\mathbf{k}_1, \mathbf{k}_3) \, d\mathbf{k}_3 \quad \text{where}$$

$$T(\mathbf{k}_{1}, \mathbf{k}_{3}) = 2 \oint [n_{1}n_{3}(n_{4} - n_{2}) + n_{2}n_{4}(n_{3} - n_{1})]C(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4})\theta(|\mathbf{k}_{1} - \mathbf{k}_{4}| - |\mathbf{k}_{1} - \mathbf{k}_{3}|)|\partial W/\partial n|^{-1} ds,$$

if $f(k_3) > 2 \times f(k_1)$ skip...

$$i = 1, 2, 3 \dots n$$

$$nzz = n(n+1)/2$$

Limit the loops – no need to go to *n*: and because $f_n = f_0 \times \lambda^n$ we can write $kzone = INT (log2/log\lambda)$ We tried "3, 4, …" and found "2" is enough…

1-point time integration

WWM (Roland et al., 2012) with **ST4**

<u>WW3</u> (v4.18) with <u>ST4</u>

Depth calculations... and look-up tables: ... ongoing work

Terms of the Snl:

$$\frac{\partial n_1}{\partial t} \equiv S_{nl} = \int \int T(\mathbf{k}_1, \mathbf{k}_3) \, d\mathbf{k}_3 \quad \text{where}$$

$$T(\mathbf{k}_{1}, \mathbf{k}_{3}) = 2 \oint [n_{1}n_{3}(n_{4} - n_{2}) + n_{2}n_{4}(n_{3} - n_{1})]C(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4})\theta(|\mathbf{k}_{1} - \mathbf{k}_{4}| - |\mathbf{k}_{1} - \mathbf{k}_{3}|)|\partial W/\partial n|^{-1} ds,$$

are functions of depth.....

 \rightarrow pre-compute these for each depth...

For example the "grad" = $|\partial W / \partial n|$ term...

Computational time Alternate frequency, angles & interaction points can speed up dTSA about 30-40 × or more; Including 'zone of influence' computation; Best accurate results are 20 × slower than DIA

Summary

Implemented TSA in WWM and WW3
 Reliable results for 'academic' JONSWAP tests
 " fetch- and duration-limited growth
 Optimization of TSA code is ongoing.
 MPI + OpenMP may make faster TSA runs
 Finite water depth methodology ... ongoing...

Acknowledgements: ONR, Canada Panel on Energy R & D.