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What are the objectives? 
 1. Replace DIA – Discrete Interaction Approximation – in WW3  

2. Implement TSA into WW3 using an efficient accurate new 
formulation for quadruplet (nonlinear) wave-wave interactions 

3. Tests including: waves - swell, turning winds, shallow water… 

4. Tests for real North Atlantic storms 
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Wave generation and growth… 
a balance equation … 

where source terms are: 
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= group velocity 

= wind input 

= wave dissipation 

= nonlinear transfer due to wave-wave interactions 
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Snl  ⇒ full Boltzmann Integral - FBI 

For internal transfer of wave action (or energy) in the spectrum at n1 (e.g. at 
k1) via wave-wave interactions by k2, k3, k4) -  Hasselmann (1962), Zakharov (1966) 
 

TSA – Two-Scale Approximation   
ni = ni [broad-scale] + ni [local-scale]  ;  i =1,2,3,4 

Neglect    n2 [local-scale] and n4 [local-scale]   

[Resio and Perrie 2008; Perrie & Resio 2009] 
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JONSWAP sheared spectrum with Hasselmann-Mitsuyasu directional:  
(a) broad- and local-scale terms normalized by f -4,  
(b) 1-d comparison of DIA, WRT and TSA, (c) 2-d action density ni,  
(d) Snl(f,θ) results from DIA (e) WRT (f) TSA. fp=0.1, α=0.0081, σA=0.07, σB=0.09.    
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DIA FBI TSA 

WW3  + ST1 source: fetch-limited growth 
6 hr 
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FBI TSA 

12 hr 

DIA 

WW3  + ST1 source: fetch-limited growth 
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FBI TSA 

18 hr 

DIA 

WW3  + ST1 source: fetch-limited growth 
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FBI TSA 

24 hr 

DIA 

WW3  + ST1 source: fetch-limited growth 
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FBI TSA 

30 hr 

DIA 

WW3  + ST1 source: fetch-limited growth 
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WW3 – with ‘old’ ST1: fetch-limited growth 



1-point time integration 

WWM (Roland et al., 2012) w. early TSA 
version + ST4 From Ardhuin et al. (2010) 

WW3 (Tolman, 2009) with ST2 
From Tolman + Chalikov (1996) 
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1-point time integration 

WWM (Roland et al., 2012) with ST4 WW3 (v4.18) with ST4 
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WW3 – constant U10 – 48+hr  ST4 

DIA dTSA FBI 
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1. Multiple spectral peaks - mTSA 
 

f 

E(f) 

fp1   fs        fp2 

Broad-scale term parameterization…?  
F(k)Norm = F(k)×k2.5 / β             [Resio&Perrie, 1989; Resio et al. 2004…]  
 
Should be β ~ 1/∆f ∑[F(k)×k2.5 ]|equilibrium range 
 
But equilibrium range is hard to define when fp1 and fp2 are close… 
 
So let β = F(k)×k2.5 |fs …                    for the first peak … second etc. 

equilibrium range… 

- there are usually multiple peaks… 
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1. Multiple spectral peaks - mTSA 
 

f 

E(f) 

fp1   fs        fp2 

equilibrium range… 

1. Find the peaks; if “many” then choose the largest 2… 
2. Fit each peak separately: fp1 and fp2 
3. Define a separation frequency: e.g. take the mean, or maybe the 
 minimum in the spectrum, fs 
4. Make the fit for JONSWAP-type parameters for each peak:  fp, α, σ θ γ 
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Multiple TSA  

----------------------------- 
-------------------------------- 
--- 

-------- 
-------- 
------ 
-- 

m1, slope ( ~ equilibrium range) 

m2, slope (~ equilibrium range) 

Peak 1 

Peak 2 

---------------- 

Have to match or smooth… spectral energy at points a and b  

a 

b 
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mTSA  
Equilibrium range problem… 
- usually understood as (Resio et al., 2004) 
          1.5 fp < f < 2.5 fp 
- in practice must find at least 1 frequency bin 
- this depends on the grid spacing λ where  
 fn+1 = λ fn 
- require in each peak region to have enough  
    bins so that  
  fequilibrium range = λn fpeak  or 2 x fpeak 
 
then:   λn - 0.025 < fequilibrium range ⁄ fpeak < λn + 0.025 
- Otherwise TSA is not called for 2 peaks! 
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2. Alternate the loops 
5 loops in frequency, direction and interaction locus… 

Do “loops”, 2 
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3. TSA  “zone of influence” calculation 

1. Given (f,θ), the ‘zone of influence’ is about ± 6  
frequency or angle bins, for λ in this grid… 

2. So the cross-terms in the main TSA 
calculation between broad-scale and local-
scale are only allowed in the ‘zone of influence’  
 

 k1  1 to nfrequency bins 

 k3  starts at bin of k1,  
      goes to ‘zone of influence’,  
      kzone; no need for more… 
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Limit the loops – no need to go to n: 
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1-point time integration 

WWM (Roland et al., 2012) with ST4 WW3 (v4.18) with ST4 
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are functions of depth….. 
pre-compute these for each depth… 
 
 

Depth calculations… and look-up tables: 
… ongoing work 

Terms of the Snl:  
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Computational time 
 Alternate frequency, angles & interaction points 

can speed up dTSA about 30-40 × or more;  
 Including ‘zone of influence’ computation; 
 Best accurate results are 20 × slower than DIA 
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DIA WRT dTSA 
×40DIA; ~ 2013 20×DIA; 2015 

mTSA 
×1000 DIA 
in speed 
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Summary 
1. Implemented TSA in WWM and WW3 
2. Reliable results for ‘academic’ JONSWAP tests 
3.   “   "    fetch- and duration-limited growth 
4. Optimization of TSA code is ongoing.  
5. MPI + OpenMP may make faster TSA runs 
6. Finite water depth methodology … ongoing… 
 
 Acknowledgements: ONR, Canada Panel on Energy R & D. 
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