Spatial wave field characteristics

JOHANNES GEMMRICH

University of Victoria, Victoria, BC gemmrich@uvic.ca

ERICK ROGERS

Naval Research Laboratory, Stennis Space Center, MS

JIM THOMSON

Applied Physics Laboratory-UW Seattle, WA,

ANDREY PLESKACHEVSKY, SUSANNE LEHNER

German Aerospace Centre (DLR), Bremen, Germany

- Summary: Strong wave field variability present in open ocean, coastal ocean and partially ice covered ocean
 - can be addressed with different methods
 - need to address definition of dominant wave

Funded by

(Original) motivation: Non-stationarity of wave field affects rogue wave statistics

Assume wave height time series with significant wave height H_s but 2 stationary halves:

 $(H_s is always calculated from entire record length)$

 $\ln(-\ln P)$

0.8

1.4

1.2

 η/H_s

1

 $\varepsilon = 0.6$

1.6 1.8

$$H_1^2 = H_s^2(1 + \varepsilon) H_2^2 = H_s^2(1 - \varepsilon)$$

$$P\left(\frac{\eta}{H_s} > z\right) = \frac{1}{2} \left[exp\left(\frac{-8z^2}{1+\varepsilon}\right) + exp\left(\frac{-8z^2}{1-\varepsilon}\right) \right]$$

Rogue wave occurrence in a nonstationary record of two equal length parts (coloured lines) is much higher than if the record were treated as 2 stationary parts (black).

From Gemmrich & Garrett, NHESS 2011

What about spatial inhomogeneity of wave field?

Methods (remote sensing):

TerraSAR-X (DLR)

- Sunlight independent (active sensor)
- Signal penetrates the clouds
- 1.25m resolution
- Swath width: 30 km

Empirical algorithms for retrieval of

- significant wave height
- wind speed

(M. Bruck 2015; A. Pleskachevsky 2015)

Wind

Sea State

Ice and Icebergs

Methods (in-situ):

SWIFT, waveglider (APL)

Methods (model):

$\frac{\partial N}{\partial t} + \nabla \cdot \vec{c} N = \frac{S}{\sigma}$

WAVEWATCH-III® model (NRL)

$$S = S_{in} + S_{ds} + S_{nl4}$$

- N = spectral density of wave action
- c = propagation speed
- *k* = wave number
- σ = relative radial wave frequency
- Θ = wave direction

$$S_{ds} = S_{br} + S_{bot} + S_{ice}$$

- polar stereographic grid, ~16 km resolution
- ice source function S_{ice} by NRL (Rogers & Zieger, 2014)
- thin ice: Visco-elastic model (Wang & Shen, JGR, 2010)
- thick ice: "turbulence under ice" dissipation (Ardhuin, pers. com.)
- ice concentration and thickness: Navy implementation of CICE
- winds: operational analyses (NAVGEM)

2 case studies in open ocean (North Pacific, Station P)1 case study in coastal ocean (Hecate Strait, BC coast)2 case studies in partially ice covered ocean (Beaufort Sea)

Open ocean (1): remote sensing H_s and wind speed

black:WW3 model results/inputred:SWIFT measurementmagenta:wave buoy measurement

WW3: $\Delta H_s = 0.4 \text{ m}$, $\Delta u = 3 \text{m/s}$ TSX: $\Delta H_s = 1.0 \text{ m}$, $\Delta u = 3 \text{m/s}$

Waves interacting with wind-induced inertial currents

See Gemmrich & Garrett, JPO 2012

Open ocean (2): remote sensing H_s and wind speed

black:WW3 model results/inputred:SWIFT measurementmagenta:wave buoy measurement

WW3: $\Delta H_s = 0.2 \text{ m}$ TSX: $\Delta H_s = 1.0 \text{ m}$

Record size, open ocean (1). (Spatial \rightarrow temporal record length)

Wave/wind parameters based on 2560m x 2560m area ≈ 28 wave lengths

\rightarrow equivalent to 45 min record

Wave/wind parameters based on 5120m x 5120m area

- ≈ 56 wave lengths
- \rightarrow equivalent to 3 h record

Record size, open ocean (2). (Spatial \rightarrow temporal record length)

Wave/wind parameters based on 2560m x 2560m area ≈ 13 wave lengths → equivalent to 15 min record

Wave/wind parameters based on 5120m x 5120m area ≈ 26 wave length → aquivalant to 1b record

→ equivalent to 1h record

Record size

Open ocean 1

56 – 28 wave lengths record size: Little effect

Open ocean 2

26 – 13 wave lengths record size: Larger area → greater H_s

Open ocean (1): dominant wave length, and direction

black:WW3 model results/inputred:SWIFT measurementmagenta:wave buoy measurement

WW3:
$$\lambda \approx 140 \text{ m}$$
TSX: $\lambda \approx 70 \text{ m}$ Datawell: $\lambda \approx 110 \text{ m}$ SWIFT: $\lambda \approx 100 \text{ m}$

Open ocean (2): dominant wave length, and direction

black:WW3 model results/inputred:SWIFT measurementmagenta:wave buoy measurement

WW3: $\lambda \approx 160 \text{ m}$ TSX: $\lambda \approx 90 \rightarrow 220 \text{ m}$ Datawell: $\lambda \approx 190 \text{ m}$ SWIFT: $\lambda \approx 70 \text{ m}$

Open ocean: dominant wave length, and direction - record size

Little effect of record size on wave length retrieval

What is the dominant wave length ?

What is the dominant wave length ?

2-D k-spectrum resolves old and new wave filed
1-D k-spectrum: only new wave field
1-D ω-spectrum: only new wave field, smaller values

Coastal ocean: remote sensing H_s and wind speed

 $\Delta H_s = 1.5 \text{ m along 20km}$

Coastal ocean: dominant wave length and direction

Beaufort Sea, partially ice covered (Aug 3): Model H_s

Partially ice covered: remote sensing H_s and wind speed

black: WW3 model results/input red: SWIFT

WW3: low wind speed \rightarrow lower Hs

9.5

9

8.5

8

7.5

7

6.5

6

5.5

5

Partially ice covered: remote sensing dominant wave length and wave direction

Numbers: WW3 model results

WW3: too short waves SAR: dropouts in partial ice coverage

Beaufort Sea, partially ice covered Decay phase of a 'substantial event' (Aug 9)

Potentially long fetch

Beaufort Sea, decaying wave event: H_s and wind speed

black: WW3 model results/input **red**: SWIFT measurement

 ΔH_s : 1m over 50 km WW3 –SAR: capturing spatial variability model: max H_s too low

Beaufort Sea, decaying event: remote sensing dominant wave length and wave direction

WW3: too short waves, no spatial variability direction correct, incl. variability

Summary

Strong Hs gradients observed in open ocean,

e.g. 2.2m – 3.5m in 40 km

- Not captured in WW3
- Need to understand the source of gradients (currents?)
- Strong Hs gradients observed in coastal ocean, e.g. 0.8m - 2.2m in 30 km
- very dynamic wave climate in late summer in the Beaufort Sea
- high spatial variability
- Need for definition of dominant wave in spatial measurement (peak of 2D-k, 1D-k, 1D-ω)
- Space-borne SAR best tool to study spatial wave field characteristics