

the state to the the

14th INTERNATIONAL WORKSHOP ON WAVE HINDCASTING AND FORECASTING - 5th COASTAL HAZARDS SYMPOSIUM

Projected changes in the Arctic Ocean wave climate using the CMIP5 simulations

M. Casas-Prat¹, X. L. Wang¹ and N. Swart²

¹Climate data and analysis, Climate Research Division, EC ²Canadian Centre for Climate Modelling and Analysis, Climate Research Division, EC

Key west, November 13th 2015

Contents

- Introduction
- Wave model setup
- Forcing: CMIP5
- Results: ONGOING WORK
- Summary

Introduction

- Climate change: **global warming** → Arctic
- Changes in Arctic wave climate factors:
 - Ice retreat \rightarrow **New** open water areas
 - Ice retreat \rightarrow **Fetch** increase:
 - More fully developed sea states (not fetch limited)
 - Wind sea might even develop into swell
 - Changing surface winds \rightarrow Wave forcing
- Impacts: coastal erosion, shipping, acceleration of ice retreat — feedback
- Wave modelling in the Arctic is challenging: CFL restriction at high lat, pole singularity, ice-wave interactions, etc

Wave model setup

- WAVEWATCH III 4.18
- SMC grid resolution:
 - Global: 50-100km
 - Arctic: 12-25km
- Forcing: 10m wind (w) & sea ice concentration (sic)
- Physics: ST4
- Ice: IC0 (25%,75%)
- Output: mean wave parameters $\Delta t=1h$
- Parallelization: 514 MPI tasks

SMC grid: features

Multi resolution grid

Increase spatial resolution at desired locations (near coast and/or specific areas)

Arctic

Cell merging at high latitudes: relaxes CFL restriction

Polar cell is introduced

Environment Environnement Canada Canada

Page 5 - November-14-15

SMC grid: 50-100km GLOBAL grid

Environment Environnement Canada Canada Page 6 - November-14-15

SMC grid: 25-50km ARCTIC grid

Forcing: CMIP5

Environment Environnement Canada Canada Page 8 - November-14-15

Canada

Environment Canada Canada Page 9 - November-14-15

Mean Hs 1979-2005 (ref)

Canada

Canada

Environment Environnement Canada Canada Page 14 - November-14-15

Environment Environnement Canada Canada

Page 15 – November-14-15

Environment Environnement Canada Canada

Page 17 – November-14-15

Annual % time with waves (<75% sic)

1979-2005

rcp8.5 2081-2100

Results: swell – mean α

 $Tp \sim \alpha_{\gamma}$

Summary

- SMC grid: convenient to model waves in the Arctic
- Preliminary results with MIROC5 (rcp 8.5 2081-2100):
 - Mean Hs tends to generally decrease in areas with already existing wave climate BUT
 - New areas of wave climate with up to 1.5m in summer (almost ice free) and up to 4 m in winter
 - Almost half year \rightarrow waves entire Arctic (<75% sic)
 - Increase swell conditions
- Future work:
 - More model combinations
 - "Test" ice formulation

Acknowledgements

- SMC grid: Dr. Jian-Guo Li
- NSERC postdoc fellowship (Natural Sciences and Engineering Research Council)
- Sponsored by WMO

THANK YOU!

