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BACKGROUND & MOTIVATION

> The SAAB/ Rosemount WaveRadar widely used by offshore industry
Shell have 12 platformsin North Sea and 10 in South China Sea with WaveRadar
More than 500 installed worldwide.

Easy to maintain and service and do not require expensive ship time needed for
deployment and recovery of wave buoys

Can sample the sea surface elevation at up to 10 Hz.
B Provided most (~95%) of the data for a recent study of extreme crests (CresT)

> Performance

m  Operationally reliable
m Specified 10 degree beam width could lead to footprint issues
m Noreika et al. (2011) compared WaveRadar against DWR
m  Wave Radar Hs 4%10%less than DWR
m  Wave Radar Hs up to 16%less than DWR during large sea states during TC
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THE SAAB/ ROSEMOUNT WAVERADAR

f, o

% f. = 10.3 GHz

V& fy=9.7 GHz

Deltaf = f.-f, to f.-f;

FMCW method

Linear sweep — up &
down

Frequency difference
between received and
transmitted proportional
to the distance to the
surface

A number of
measurements over the
measurement cycle of
10.3Hz and averaged




SIMULATIONS - SURFACE WAVE

Long-crested plane sinusoidal wave — frequency = 2 Hz, Amplitude =1 m
Random linear wave field — JONSWAP frequency spectrum, fp = 0.10 Hz
" JONSWAP frequency spectrum Af =6.3x107“Hz [0,10 | Hz

® Bimodal directional distribution (Ewans, 1998)

® 32,768 points with time step 0.0485 s (~ 26.5 minutes)

® 5 metre square, resolution 0.01 metres (250,000 points)
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SIMULATIONS — RADAR

Assume signal processing to convert the frequency differences to ranges is
done perfectly by the WaveRadar

Assume we have output of the FMCW frequency analysis — the reflected
signal intensity (or gain) as a function of range — available directly.

Assume that our signal is the summation of all the received signals reflected
from the surface of the water at an instant of time

Zj:E;(xj,yj,zj)

E’ X. y 7 . | isthe signal reflected from the point (X., Y., Z.)
J | R . 'Y
and received at the antenna



SIMULATIONS — RADAR

E5 (X Y;.2;) = E(65 ) A(2r)R(6,)

E ((9]0 ) Is the antenna signal strength at
angle 0,

A(Z r. ) is the attenuation associated with
J path-loss over the range I’j

R (er ) Is the reflection coefficient
corresponding to the radar
signal reflection angle between
the incoming ray from the radar
and the local surface normal

msl = —20 metres



SIMULATIONS — RADAR BEAM PATTERN

10 GHz, B- och Hoplan vs vinkel
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Friis — Free Space Path Loss
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SIMULATIONS — RADAR SURFACE REHECTION
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SIMULATIONS — RADAR SIGNAL PROCESSING

Reflected signals from all of the surface points (~250,000) are accumulated
The reflected signals are ordered in terms of range
A cumulative sum of the gains calculated and smoothed

The density function derived and the maximum determined

20 L T T — — T T 1
1 -

-10.5

0 S 1 1 | | 1 I
205 20.6 20.7 20.8 209 21 211 212 11
Range (m)



‘fariance density (m/Hz)
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RESULTS - RANDOM LUNEAR SURFACEHEVATION

Surface Elevation (m)
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Elevation (m)

RESULTS - RANDOM LUNEAR SURFACE HEVATION

Surface slevation
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RESULTS - RANDOM LUNEAR SURFACE HEVATION
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RESULTS - RANDOM LUNEAR SURFACE HEVATION

RADAR elevation (m)
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RESULTS - RANDOM LUNEAR SURFACE HEVATION
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Variance density (m?/Hz)
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RESULTS - RANDOM LUNEAR SURFACE HEVATION
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HEHD MEASURBMENTS - 10 HZ ST JOSEPH PLATFORM

STJ 10-Jun-2012 16:00:00
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HED MEASURBMENTS — NORTH CORMORANT

NC SAAB versus NC WAVEC Hs 05-Nov-1985 to 02-Sep-2002
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HED MEASURBMENTS — NORTH CORMORANT

NC SAAB REX versus NC WAVEC Hs 21-May-2003 to 01-Jan-2004
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HHEHD MEASURBMENTS — AUK

Auk SAAB versus Auk WAVEC Hs 26-Jan-1987 to 29-Jan-2003
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HHD MEASURBMENTS — GANNET & ANASURA

Gannet SAAB Rex versus Anasuria Dir. WaveRider Hs 17-Feb-2012 to 31-Aug-2013
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CONCLUSIONS - SMULATIONS

> Simulations of WaveRadar measurements of a random linear surface wave
field indicate that the WaveRadar should faithfully measure the surface
elevation at a point directly below the radar at frequencies between 0.06 Hz
and 0.6 Hz

> The main cause for the departuresin the smulated measurements outside
that frequency band is due to the particular method we have employed for
processing the reflected radar signals, and especially the peak-picking
method

no effect on the significant wave height

elevated spectral levels above 0.6 Hz can bias the spectral moment periods high
by a few percent, if the calculation of the spectral moments includes frequencies
above 0.6 Hz

B the departures in the ssimulated measurements outside that frequency band have no
appreciable effect on the calculated zero-crossing crests and troughs, though a
small spread is seen for small values of those parameters
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CONCLUSIONS — HHD MEASURBMENTS

> The field measurements made at a sampling frequency of 10 Hz indicate that
the WaveRadar performs much better than the our simulations suggest

m roll-off in spectral density continuing to much higher frequencies than the
simulations

B |ow-frequency plateau occurring an order of magnitude lower relative to the
spectral peak

> Sgnificant wave height of WaveRadar measurements against Datawell wave
buoy measurements made in the North Sea generally show fairly good
agreement

m  Comparisons between the earlier WaveRadar units and the Wavec buoy are in
very good agreement for wave directions not expected to be affected by the
platform and small reductions in the WaveRadar values compared with the buoy
values for directions expected to be affected by the platform

m  Comparisons of the Rex WaveRadars against the wave buoys show systematic
differences in the significant wave height in some cases, though the differences are
relatively small (~10% at worst). This cannot be explained by platform interference,
but appears to be more related to the specific setup of the instrumentation
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> WaveRadar provides good measurements of the surface wave

B Supporting offshore operational activities and engineering requirements
m Investigating fundamental aspects of ocean surface waves
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