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1. Introduction

The models presented in this paper are stochastic mod-
els in space and time that aim at describing the distribution
of significant wave height in space and time. They are fit-
ted to data for an area in the North Atlantic Ocean and
estimate the complex spatio-temporal dependence struc-
ture at various scales inherent in the data. The models
were developed as part of a PhD study at the University of
Oslo (Vanem 2012, 2013) and have previously been fitted
to corrected ERA-40 data for the North Atlantic (Caires
and Swail 2004; Sterl and Caires 2005).

In recent years, it has become increasingly evident that
the globe is experiencing a change in climate, mostly due
to human activities and emission of greenhouse gases. In
this context, it becomes important to understand how such
changes may impact the ocean wave climate and subse-
quently how this may impact the environmental loads on
marine structures (Bitner-Gregersen et al. 2012; DNV 2010,
2011; Vanem and Bitner-Gregersen 2012). Hence, the mod-
els presented in this report include a component for de-
scribing long-term trends in the data for significant wave
height. Such trends may then be extrapolated to give indi-
cations of possible future trends in the wave climate. Pre-
viously, model alternatives with linear and quadratic trend
functions (Vanem et al. 2012a), with a log-transform of
the data (Vanem et al. 2012b) and with regression on at-
mospheric CO2 levels (Vanem et al. 2013) have been de-
veloped and applied to the C-ERA-40 data of significant
wave height. The various model alternatives all identified
increasing trends in the significant wave height data over
the area in the North Atlantic, a finding that has also been
substantiated by various time-series trend analyses tech-
niques as presented in Vanem and Walker (2012). The
same modelling framework has also been applied to wind
speed data over the same area, as reported in Vanem and
Breivik (2013), but failed to identify any significant trends
for the windiness. Presumably, this may indicate that the
observed increase in waviness is due to increased swell.

In this paper, the Bayesian hierarchical space-time model
will be applied to NORA10 data (Reistad et al. 2011, 2007)

of significant wave height for an overlapping area of the
North Atlantic. The Nora10 is a regional hindcast obtained
by dynamical downscaling of the ERA-40 data, produc-
ing 3-hourly wave fields at 10-11 km grid spacing. The
atmospheric forcing is obtained with the 10-km resolu-
tion HIRLAM10 model (Undén et al. 2002). Compared
to the C-ERA-40 data, with a spatial resolution of 1.5
x 1.5 degrees (corresponding to about 167 km grid spac-
ing in lateral direction and between 76 and 105 km grid
spacing in longitudinal direction (Vanem et al. 2011)), the
NORA10 data has a much higher spatial resolution and is
believed to be more accurate. It has also been reported that
the NORA10 data yields significantly higher return values
compared to the ERA-40 data (Breivik et al. 2013). 100-
year return value estimates for the NORA10 data of signif-
icant wave height were presented in Aarnes et al. (2012).

By applying the same model on the NORA10 data that
has previously been applied to C-ERA-40 data, the results
may be compared and the effect of the increased spatial
resolution can be evaluated. Furthermore, it is interesting
to investigate whether similar long-term temporal trends
are present in the NORA10 data and to provide estimates
of these trends.

2. Data and Area Description

The study presented in this paper has analysed the
NORA10 significant wave height data for a selected area
in the North Atlantic Ocean. In the following, the selected
area and the data for significant wave height will be de-
scribed. The models have used regression on CO2 levels
in the atmosphere in order to estimate long-term trends,
and both historical CO2 data and future projections are
needed, for fitting the model and for making projections of
the wave climate, respectively.

North-Atlantic area selected for the analysis

The area selected for this analysis is an area in the
North Atlantic Ocean that is partly overlapping with the
area that was selected for analysis with the C-ERA-40 data.
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Table 1. Coordinates of the corners of the NORA10 area;
(Degrees North, Degrees East)

Corner West East
North (62.59, 16.37) (60.39, 6.97)
South (57.9, 19.87) (55.99, 11.5)

It has been chosen so that the area is some distance away
from the boundary of the NORA10 model domain so that
possible edge-effects are minimized. In Fig. 1, the area
that has previously been investigated based on C-ERA-40
data is shown together with the new area analysed by the
NORA10 data.

As can be seen from Fig. 1, the area for the C-ERA-40
data is much larger than the area for the NORA10 data.
However, due to the much higher resolution of the NORA10
data, the latter area contains a much larger number of grid
points. The green area in the figure contains 9 x 17 =
153 C-ERA-40 data points whereas the smaller blue area
contains 51 x 51 = 2601 NORA10 data points. Thus, the
analysed NORA10 data contain 17 times more spatial data-
points than the C-ERA-40 data.

The C-ERA-40 data lie on a cylindrical grid, between
51 and 63 degrees north and 12 and 36 degrees west, with
grid points 1.5 degrees apart in both directions. Hence, the
geographical distance between data points differs with lat-
itude, with about 167 km grid spacing in lateral direction
and between 76 (northernmost) and 105 (southernmost)
km grid spacing in longitudinal direction (Vanem et al.
2011). The NORA10 data, on the other hand, lies on a
rotated spherical equidistant grid, with a spatial separa-
tion of 10 km between grid points in both directions. This
means that the grid points do not correspond to integer
longitude and latitude, but the geographical distance be-
tween neighbouring points is constant throughout the grid.
The coordinates of the four corners of the NORA10 area
are given in Table 1.

Even though the area for the NORA10 data is much
smaller than the area previously analysed with C-ERA-40
data, the much higher resolution means that the amount
of spatial data is significantly higher. This slows down the
computation and it was decided to run five sets of simula-
tions. First, the NORA10 area is divided into four quarters
and simulations are run separately for each quarter-area
with half the spatial resolution, corresponding to four areas
with 13 x 13 = 169 grid points. Subsequently, simulations
are run on the whole area with reduced spatial resolution,
i.e. using every fourth data-point to obtain a grid with
40 km separation between the grid points. The results for
the complete area can then be compared with the results
pertaining to each of the quarter-areas. The coordinates of
the corners in each of the quarter-areas are given in Table

Table 2. Coordinates of the edges of the quarter-areas;
(◦N, degE)

Quarter-area Coordinates of the edges

Q1
(60.17, 18.34) (59.26, 13.93)
(57.90, 19.87) (57.06, 15.74)

Q2
(62.59, 16.37) (61.62, 11.69)
(60.35, 18.18) (59.45, 13.77)

Q3
(59.18, 13.58) (58.12, 9.47)
(56.99, 15.40) (55.99, 11.50)

Q4
(61.53, 11.32) (60.39, 6.97)
(59.36, 13.41) (58.30, 9.29)

2, and the quarter-areas are indicated in Fig. 1.

NORA10 data for significant wave height

The NORA10 data stem from a combined high-resolution
atmospheric downscaling and wave hindcast based on the
ERA-40 reanalysis over the north-east Atlantic (Reistad
et al. 2011). Atmospheric forcing is obtained from the
10-km High-Resolution Limited Area Model (HIRLAM10)
(Undén et al. 2002) and wave simulations are made by a
modified version of the WAM cycle 4 model (Komen et al.
1994), run on the same grid as HIRLAM10 (WAM10).
This is nested inside a WAM model at 50-km resolution
(WAM50) forced by ERA-40 wind fields covering the most
of the North Atlantic to account for swell intrusion from
the North Atlantic. South Atlantic swell intrusion is ne-
glected.

The NORA10 data set for significant wave height con-
tains 3-hourly wave fields with a spatial resolution of 10-11
km and covers an area in the north-east Atlantic includ-
ing the North Sea, the Norwegian Sea and the Barents
Sea. The complete NORA10 domain is illustrated in Fig.
2, which also indicates the area selected for study in this
work.

Initially, NORA10 covered the time period September
1957 - August 2002, but the NORA10 data set is contin-
ually being extended using operational analyses from the
ECMWF (European Centre for Medium-Range Weather
Forecasts) as boundary and initial conditions (Aarnes et al.
2012). Hence, the NORA10 data set analysed in this paper
spans the period January 1958 - December 2012, and the
actual analysis considers data from January 1959 to De-
cember 2012. Data for the year 1958 were excluded from
the analysis because CO2 data were not available before
March 1958. For the purpose of fitting the Bayesian hi-
erarchical model, monthly maximum data have been used,
and the monthly maxima at each spatial location have been
extracted for each month of the 55-year period 1958 - 2012.
Hence, time-series of 660 data points in time for each of the
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Fig. 1. Areas in the North Atlantic selected for study. The area analysed with C-ERA-40 data (green) and the area
analysed with NORA10 data (blue)

2601 spatial grid points, totalling 1 716 660 data points in
space and time, extracted from NORA10 form the basis for
the analysis presented herein. However, due to time con-
suming simulations, the spatial resolution has been reduced
before running the simulations, as outlined above.

Comparison with in situ measurements and satellite ob-
servations is reported in Reistad et al. (2011) and reveals
that the NORA10 data yields a significant improvement
compared to the ERA-40 data. For example, the ERA-40
data consistently underestimate the mean wave height, a
bias that is not reproduced by the downscaling. Further-
more, root mean square errors are higher for the ERA-40
data compared to NORA10. Hence, it is assumed that the
NORA10 represents a significant improvement compared
to ERA-40 and that the NORA10 data are superior. In
particular, it is well accepted that the upper percentiles
of the significant wave height distribution are underesti-
mated by ERA-40 and NORA10 yields significantly higher
return values. Comparison of significant wave height from
ERA-40 and the coarser WAM50 indicates a very close cor-
relation

Initial data analysis

A brief initial data inspection reveals that the mean
significant wave height in the dataset described above is

7.9 m (monthly maximum data). This is higher than for
the C-ERA-40 data where the mean value was 7.5 m. The
minimum value is 2.4 m and the maximum value is 21.7 m
in the NORA10 data.

The average monthly maxima for individual months in
the NORA10 data are given in Table 3. Included in the
table are also the corresponding averages for the C-ERA-40
data for comparison (Vanem 2013), and it is interesting to
observe that the monthly maxima from the NORA10 data
are consistently higher than for the C-ERA-40 data; For
each individual month the average monthly maximum over
the data period is higher in the NORA10 data. Differences
range from 0.24 m to as much as 1.91 m for the month of
March. Overall, the average monthly maximum is 41 cm
higher in the NORA10 data. The minimum and maximum
values for individual months (monthly maximum for the
NORA10 data) are also presented in Table 3.

The density of the monthly maximum data from the
NORA10 is shown in Figure 3, where also the density for
the monthly maximum data from C-ERA-40 is shown. It is
seen that the densities are largely overlapping even though
the NORA10 density seems to be slightly shifted towards
higher values. This indicates that the NORA10 data gen-
erally has slightly higher values for the monthly maximum
significant wave height, as expected.
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Table 3. Average monthly maxima for individual months in the NORA10 data and comparison with C-ERA-40 data.
Minimum and maximum monthly maximum significant wave height for individual months. (m)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Overall
NORA10 10.6 10.0 9.09 7.30 6.23 5.27 4.95 5.33 7.60 8.75 9.40 10.2 7.89
C-ERA-40 9.87 8.91 7.18 5.89 5.89 5.03 4.42 5.04 6.96 8.21 8.69 9.79 7.48
Difference 0.73 1.09 1.91 1.41 0.34 0.24 0.53 0.29 0.64 0.54 0.71 0.41 0.41

Min 5.9 5.0 4.5 4.1 3.0 2.6 2.4 2.6 4.0 3.6 5.0 5.6 2.4
Max 21.7 17.4 16.3 13.0 13.0 10.0 10.2 11.5 14.5 15.0 18.7 18.5 21.7

Fig. 2. The NORA10 model domain

A particular interest is in estimating possible long-term
trends in the data. A crude approach could be to fit a
straight line to time series of the data by least squares.
In Fig. 4 such straight lines are fitted to time-series of
spatial mean, spatial maxima and spatial minima of the
NORA 10 data (a similar exercise was reported for the
ERA-40 data in Vanem and Walker (2012)). The estimated
intercepts and slopes of the fitted straight lines as well as
the associated accumulated trends over the data period
are presented in Table 4. This crude exercise suggests that
there are increasing trends in the spatial min, mean and
max time series, with highest trends for the spatial maxima
at almost 70 cm over the data period. For the average, an
estimated overall trend of about 29 cm is obtained in this
way. However, the time series are quite noisy, and the
p-values of the estimated trends are 0.398 (spatial min),
0.463 (spatial mean) and 0.0854 (spatial max), respectively.

Fig. 3. The density of the NORA10 data for monthly max-
imum significant wave height (black line). For comparison,
the density of the C-ERA-40 data is also shown (red dotted
line)

Hence, even though the least square approach estimates an
increasing trend in the data, the trends are not found to
be statistically significant at 95% or 99% significance level.
For the spatial maxima, the trend is statistically significant
at the 90% level, but the spatial minima and mean fail to
be significant at any reasonable significance level.

It is noted that when the same crude exercise of fit-
ting a straight trend-line by least squares was made for
the C-ERA-40 data, the estimated trends were found to
be statistically significant at 99% level (p-values were not
reported in Vanem and Walker (2012), but all were very
small).
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Fig. 4. Initial trend analysis: Fitting a straight line by least squares to time series of spatial minima (left), spatial
averages (middle) and spatial maxima (right)

Table 4. Estimated parameters of straight lines fitted by least squares and corresponding trends

Spatial Min Spatial Mean Spatial Max
Intercept 6.1058 7.7474 9.2130
Slope 0.0003138 0.0004393 0.001056
p-value of the slope 0.398 0.463 0.0854
Annual trend (cm) 0.3765 0.5272 1.268
Accumulated trend (cm) 20.71 28.99 69.72

CO2 data

Concentrations of atmospheric CO2 have been used as
covariates for explaining possible long-term trends in the
significant wave height data, and basically two sets of data
have been exploited; historic data for model fitting and
projections of future concentration levels for future predic-
tions. The same CO2 data as was used in the analysis of
the ERA-40 data will be used, as described in Vanem et al.
(2013), and a brief description will be repeated below.

Historic data

For the purpose of this study, where the aim of intro-
ducing a regression component with CO2 levels as covari-
ates into the model is to identify long-term trends, it is
deemed sufficient to use monthly data. Hence, monthly av-
erage CO2 data from the Mauna Loa Observatory, Hawaii,
which has the longest continuous record of direct atmo-
spheric CO2 measurements, have been used (Thoning et al.
1989). The data are on the format of number of molecules
of carbon dioxide divided by the number of molecules of
dry air multiplied by one million (parts per million = ppm),
and data are available from March 1958 to present. The

data set contains the monthly averages determined from
daily averages, as well as interpolated monthly averages
where missing data have been replaced by interpolated val-
ues. Finally, monthly trend values are given where the
seasonal cycle has been removed and where linear interpo-
lation has been used for missing months. For the purpose
of this study, the monthly trend time series will be used as
covariates for the long term trend. The seasonal cycle in
the monthly maximum significant wave height is accounted
for in a separate seasonal component in the Bayesian hi-
erarchical model. The monthly trend CO2 time series are
shown in Fig. 5. It is noted that the CO2 data for 1958
are not complete and therefore the analysis reported herein
will start from January 1959.

It is also noted that the data stem from observations
outside of the area in the North Atlantic which is the focus
of this study. However, it is assumed that CO2 is well
mixed in the atmosphere, and that this does not introduce
any notable bias in the monthly trend values. Hence this
assumption is not regarded to be critical and should not
influence the results of the analysis.
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Fig. 5. Historic CO2 concentrations in the atmosphere,
1959 - 2012

Future projections

In order to make projections of future wave climate,
future projections of the covariates are needed and pro-
jections of the atmospheric concentration of CO2 will be
exploited. Future predictions are of course uncertain and
different projections of CO2 levels have been made based
on different emission scenarios. Four scenarios are referred
to as marker scenarios, supplemented with several illustra-
tive scenarios. For the purpose of this study, projected
emissions and concentrations presented by IPCC for the
four marker scenarios (A1B, A2, B1 and B2), obtained
from the ISAM carbon cycle Jain et al. (1995), have been
considered. It is observed that the scenarios A2 and B1
correspond to the highest and lowest projected CO2 levels
respectively, and it is therefore assumed sufficient to em-
ploy these two in the modelling, as the other scenarios will
fall between these. Scenario A2 might be an extreme sce-
nario, but from a precautionary perspective it is important
to include this in the analysis as this could be construed as
a worst case scenario. The CO2 projections data can also
be found in appendix II of the IPCC (2001) report IPCC
(2001).

The projected levels of atmospheric CO2 concentrations
are given for every 10 year towards 2100. For the purpose of
this study, monthly averages are needed, and simple linear
interpolation within each decade has been used in order to
estimate monthly projections. The decadal projections are
then assumed as the value for January of that year. In this
way, monthly projections of CO2 levels in the atmosphere
from year 2013 until 2100 are obtained for use as covariates
in the regression component of the stochastic model for sig-
nificant wave height. The interpolated monthly projections
are plotted in Fig. 6.

Fig. 6. Future projections of CO2 concentrations in the
atmosphere; A2 and B1 scenarios from 2013 - 2100

3. The Bayesian hierarchical space-time model

Various versions of the statistical model used in analysing
the data have previously been presented in various papers,
and will only be briefly presented in the following. The
model used in this study is essentially the same as the one
presented in Vanem et al. (2013), where regression on at-
mospheric CO2 levels is included.

The spatio-temporal data are indexed by two indices;
an index x to denote spatial location (x = 1, 2, . . . , X = 169
in the simulations reported herein), and an index t to de-
note a point in time (i.e. months, t = 1, 2, . . . , T = 648 for
monthly maxima data in the simulations reported herein).
The structure of the model will be outlined in the follow-
ing. It is noted that all the stochastic terms introduced
in the model are assumed mutually independent and inde-
pendent in space and time, having a zero-mean Gaussian
distribution with some random, but identical variance, i.e.

with generic notation εβ
i.i.d∼ N(0, σ2

β). It should be under-
stood that the model is defined ∀x ≥ 1, t ≥ 1, as relevant
for each component.

Model description

At the first level, the observations (monthly maximum
significant wave height), Z at location x and time t, are
modelled in the observation model as the latent variable
H, corresponding to the underlying significant wave height

6



process, and some random noise, εZ , which may be con-
strued to include statistical measurement error:

Z(x, t) = H(x, t) + εz(x, t) (1)

The underlying process for the significant wave height
at location x and time t is modelled by the following state
model, which is split into a time-independent component,
µ(x), a space-time interaction component, θ(x, t), and spa-
tially independent components M(t) and T (t) for seasonal
and long-term trend contributions respectively, as shown
in eq. (2). The long-term trend component is assumed
spatially invariant and models the effect of climate change
on the ocean wave climate.

H(x, t) = µ(x) + θ(x, t) +M(t) + T (t) (2)

The time-independent spatial field is modelled as a first-
order Markov Random Field (MRF), conditional on its
nearest neighbours in all cardinal directions, and with dif-
ferent dependence parameters in lateral and longitudinal
directions, as shown in eq. (3). Even though the data is
on a rotated grid so that the data points do not strictly lie
along north-south and east-west lines, the following nota-
tion has been used: xD = the location of the nearest grid
point in direction D from x, where D ∈ {N,S,W,E} and
N = ”North”, S = ”South”, W = ”West” and E = ”East”.
Hence, for instance the point xN should be construed to
be the nearest grid point immediately to the north-east of
x (see Fig. 1). The other directions are rotated in a simi-
lar way from the strictly north-south/east-west coordinate
system. If x is at the border of the area, the value at the
corresponding neighbouring grid point outside the area is
taken to be zero, hence no particular measures are taken
to correct for edge effects.

µ(x) =µ0(x) + aφ
{
µ(xN )− µ0(xN ) + µ(xS)− µ0(xS)

}
+ aλ

{
µ(xW )− µ0(xW ) + µ(xE)− µ0(xE)

}
+ εµ(x)

(3)

aφ and aλ are spatial dependence parameters in the
main directions of the grid, i.e. lateral (northeast - south-
west direction as from areas Q1 ↔ Q2 in Fig. 1) and
longitudinal (southeast - northwest direction as from areas
Q1 ↔ Q3) directions respectively. The spatially specific
mean u0(x) is modelled as having a quadratic form with
an interaction term in the rotated grid. Letting m(x) and
n(x) denote the relative ordering within the grid in either
direction of location x (with n(x),m(x) ∈ {1, 2, . . . , 13} for
a grid of size 13 × 13 = 169 as used in this study), it is
assumed that

µ0(x) =µ0,1 + µ0,2m(x) + µ0,3n(x) + µ0,4m(x)2

+ µ0,5n(x)2 + µ0,6m(x)n(x)
(4)

The spatio-temporal dynamic term θ(x, t) is modelled
as a vector autoregressive model of order one, conditionally
specified on its nearest neighbours in all cardinal directions,
as shown in eq. (5).

θ(x, t) =b0θ(x, t− 1) + bNθ(x
N , t− 1) + bEθ(x

E , t− 1)

+ bSθ(x
S , t− 1) + bW θ(x

W , t− 1) + εθ(x, t)

(5)

The temporal component is modelled with a seasonal
and a long-term trend part. The seasonal part is modelled
as a combination of an annual and a semi-annual cyclic
contribution (i.e. including the first two harmonic compo-
nents) where the seasonal contribution is assumed invariant
in space, as described by eq. (6).

M(t) = c cosωt+d sinωt+f cos 2ωt+g sin 2ωt+εm(t) (6)

In order to include and isolate possible long-term effects
of climate change in the model, the regression component
on CO2 concentrations in the atmosphere as described in
eq. (7) has been included, assuming a combination of a
linear and logarithmic relationship between the trend and
the concentration level. It is noted that different alterna-
tives for this components were investigated in Vanem et al.
(2013), e.g. including a quadratic term and purely linear
or logarithmic terms, and the linear-log form was found
to be superior for the C-ERA-40 data. Hence, only this
model alternative has been employed in this study, where
the model is used to analyse the NORA10 data. In eq. (7)
G(t) denotes the average level of CO2 in the atmosphere
at time t (month). It is acknowledged that CO2 is known
to mix well in the atmosphere, so there is no spatial com-
ponent in this regression term.

T (t) = γG(t) + ηG(t) + εT (t) (7)

In the previous studies where the model was used to
analyse the C-ERA-40 data, different model alternatives
were tried out (Vanem 2012, 2013), but in this study, only
the model according to eqs. (1) - (7) above has been uti-
lized.

Prior distributions

In order to account for uncertainties in the model pa-
rameters, prior distributions are assigned to all model pa-
rameters and all inference and predictions are made on
the posterior distribution. Hence, specifying prior distri-
butions on all the model parameters, together with speci-
fication of initial values for θ(x, 0) ∀x, completes the spec-
ification of the model. In this study, prior distributions for
all model parameters are assumed independent and condi-
tionally conjugate priors will be specified for most priors to
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ensure that the conditional posterior distributions will be
straightforward to derive. It is noted that the amount of
data is quite large in this case and that therefore, the pos-
teriors are not believed to be very sensitive to the exact val-
ues of the hyper-parameters; it is well known in Bayesian
statistics that the posteriors are asymptotically indepen-
dent of the priors as the amount of data increases. Similar
priors as in the previous studies have been used, and details
are not included in this paper.

Model implementation

Having completed the model specification and specified
the priors, the derivation of the full conditionals for each
model parameter is quite straightforward, as outlined in the
appendix of Vanem (2013). Samples from the posteriors
can then be obtained using MCMC methods, i.e. the Gibbs
sampler with additional Metropolis-Hastings steps.

The MCMC methods for generating samples from the
posterior distribution and hence inferring and making pre-
dictions from the model have been implemented in Java.
Post-processing of the results, including preparation of plots,
has been performed in R.

4. Simulation setup

As discussed above, five different subsets of the data
have been investigated individually, in order to reduce the
computation time; trying to run the model for the full
dataset causes computations to become extremely time
consuming and also increases the time for the MCMC chains
to converge. Hence, the five subsets of (monthly maximum)
data that have been analysed are (see Fig. 1):

• The complete area, but with every fourth data point
in space (totalling 13 x 13 = 169 locations)

• Sub-area Q1 with every second data point in space
(169 locations)

• Sub-area Q2 with every second data point in space
(169 locations)

• Sub-area Q3 with every second data point in space
(169 locations)

• Sub-area Q4 with every second data point in space
(169 locations)

The MCMC simulations were run with a burn-in pe-
riod of 40 000 samples and a batch size of 20. Hence, a
total of 60 000 iterations were run to obtain a total of 1000
samples of the posterior parameter vector. In each iter-
ation, the additional Metropolis-Hastings steps that were
introduced to sample from the aφ and aλ parameters were
repeated six times. This yields overall acceptance rates be-
tween 73% and 79% for the various simulation runs, which

is more than sufficient to obtain good mixing properties of
the chains.

Trace plots from the marginal sampled posterior dis-
tributions indicate stationarity and it is believed that the
burn-in period is sufficient for the chain to converge. In
the previous analyses of the C-ERA-40 data, some control
runs were performed that indicated that burn-in periods
far less than what has been employed in this study re-
sulted in stationary chains and it is therefore assumed that
convergence is likely also in the present study. However,
the spatial fields are larger and might therefore need longer
time to converge. Normal probability plots indicate that
the Gaussian model assumption might be realistic.

With the settings above, simulations of the different
sub-data sets with dimensions 169 × 648 = 109 512 data
points complete well within a day.

5. Results and predictions

In this section, the results from the simulations of the
different sub-sets of data will be presented. First, the re-
sults pertaining to the complete area, where every forth
location was used will be presented. This can then be com-
pared to the results for each of the four sub-areas that has
been analysed with higher spatial resolution.

It is noted that the long-term trend contribution does
not necessarily start at 0, so the estimated values of the
time-independent contributions, µ(x), are adjusted to in-
corporate the mean value of the estimated trend compo-
nent at year 2012 (see also the discussions in Vanem et al.
(2013, 2012c)).

Complete area

The following results are from simulations run over the
complete selected area, using every fourth grid-point in
space.

The six parameters µ0,· determine the spatially varying
mean µ0(x) over the selected area. Together with the spa-
tial dependence parameters aφ and aλ they determine the
time independent spatial field µ(x). The estimated mean
of this field for the complete selected area is illustrated
in Fig. 7, where the x- and y-directions corresponds to
the axes of the rotated grid with the NORA10 data. The
results indicate that there are relatively small spatial vari-
ations over the area, with estimated values of the mean
spatial field ranging from 7.5 to 7.8 meters over the area,
with a mean value of 7.7 meters. This is less spatial vari-
ation than what was observed in the C-ERA-40 data, but
since the NORA10 data covers a significantly smaller geo-
graphical area, this is reasonable.

For the space-time interaction component, the mean
contribution from this term ranges from -2.1 to 1.4 me-
ters over all locations and time points (except t = 0). The
average contribution is close to zero as it should, and the

8



Fig. 7. The estimated spatial random field, µ(x), for the
complete area

variances range from 0.047 to 0.37 m2. This seems reason-
able. Compared to the results for the C-ERA-40 data, it
is observed that the range of contributions for the space-
time dynamic part is of comparable order of magnitude,
but with a slightly larger contribution from this term for
the NORA10 data. This could possibly be explained by
the higher spatial resolution of the NORA10 data, which
might describe more of the short-term dynamics of the sea
states. At any rate, the estimated values are deemed to be
reasonable and a notable part of the modelled significant
wave height can be ascribed to this component.

The estimated contribution from the seasonal compo-
nent, M(t), is shown in Fig. 8 for the first ten years,
displaying a clear cyclic behaviour. The estimated sea-
sonal contribution varies between -3.0 and 2.5 meters cor-
responding to a mean annual variation in the range of 5.5
meters for the monthly maximum data. This is compara-
ble but slightly larger compared to the estimated seasonal
variation in the C-ERA-40 data. The asymmetry between
the seasonal minima and maxima is picked up by the model
due to the inclusion of the second harmonic in the seasonal
component, which is then warranted.

The estimated long-term trend over the period covered
by the NORA10 data is illustrated in Fig. 9, including the
mean and 90% credible intervals of the estimated trend.
The trend contribution is adjusted so that it starts at zero.
It is observed that the estimated trend signal is quite noisy,

Fig. 8. The estimated seasonal contribution for the first
ten years (complete area)

but that a mean increasing trend can be extracted. The
estimated mean long-term trend over the data period is 21
cm, with a 90% credible interval ranging from -5.6 cm to 48
cm. Hence, even though the model extracts an increasing
trend in the wave climate, this trend is not statistically sig-
nificant at the 90% level. Compared to the trends extracted
from the C-ERA-40 data (Vanem et al. 2013, 2012c), the
trend estimated from the NORA10 data is slightly less.
It is also noted that the trends estimated from C-ERA-40
data were statistically significant at the 90% level, whereas
this ceases to be the case for the complete NORA10 data.

Assuming that the observed stochastic relationship be-
tween significant wave height and atmospheric levels of
CO2 remains unchanged in the future, future projections
of significant wave height can be made based on differ-
ent future emission scenarios. Projections obtained in this
way by adopting the IPCC A2 and B1 scenarios, respec-
tively, are illustrated in Fig. 10. With both scenarios, the
mean future trend is increasing. It is observed that the ex-
treme emission scenario A2 yields a higher expected future
trend (note that the scales on the two figures are differ-
ent), but that neither of the future trends are statistically
significant at the 90% level. For the A2 emission scenario,
the estimated mean accumulated trend between 2012 and
2100 corresponds to an increase of 1.4 meters, with 90%
credible intervals ranging from a decrease of 1.2 m to an
increase of 3.5 meters. The corresponding mean future in-
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Fig. 9. Estimated long-term trend for the complete se-
lected area

crease estimated by assuming the B1 emission scenario is
43 cm, with 90% credible intervals ranging from a decrease
of 48 cm to an increase of 1.2 meters. Compared to the fu-
ture projections made based on the C-ERA-40 data, this is
considerable less. Nevertheless, the models identify an ex-
pected increase of the NORA10 ocean wave climate, albeit
not statistically significant.

sub-areas

In addition to running the Bayesian hierarchical space-
time on the complete selected area of NORA10 data, sepa-
rate simulations have been run on four sub-areas, referred
to as Q1 to Q4 (see Fig. 1). The setup of the simulations
is identical to the simulations for the whole area and the
results will be reported in the following. Since the sub-
areas are obviously smaller in extension than the whole
area, the spatial resolution has been doubled compared to
the simulations for the whole area without increasing the
computational time. Hence, the spatial grids are of the
same size as before, but with shorter distances between
grid points. A brief summary of the results for the various
sub-areas is given below.

The estimated mean spatial fields are presented in Fig.
11 for all sub-areas. For the rest of the components, the fig-
ures are very similar to the ones for the complete area, and
figures will not be presented. The ranges of estimated val-
ues for the different model components for each of the sub-

areas are also included in Table 5. Also the estimated 90%
credible intervals for the long term trends (1959 - 2012)
and the future projections (2013 - 2100) are presented in
Table 5.

6. Discussion and comparison of results

The simulations presented in the preceding sections use
different sub-sets of data, which all stem from the same
source, the NORA10. The differences are in spatial reso-
lution and geographical location, with the four sub-areas
essentially constituting the overall area.

The average spatial fields, µ(x), were estimated to be
slightly different for the different simulations. It was just
below 8 meters for the complete area, and varied slightly for
the different sub-areas that were investigated. The small-
est mean values were estimated for sub-area Q3, where the
time-independent part varied from 6.3 - 6.6 m. For the
other three sub-areas, the spatial fields were quite compa-
rable with estimated mean values close to 8 meters. It is
obviously not a problem that the average sea state con-
ditions are slightly different for neighbouring geographical
areas, but differences in the order of 1.5 m seem unrealistic.
A possible explanation could be that the Markov chain for
the spatial field for this particular area did not converge
sufficiently. It is also noted that the estimated values of
spatial fields for the different sub-areas were comparable to
that estimated for the C-ERA-40 data. The spatial fields
for the smaller sub-areas displayed slightly less spatial vari-
ability than for the overall area, but this could be expected
since the geographical extent is smaller.

Also the estimated space-time interaction contribution,
θ(x, t), is higher when applied to the whole area compared
to either of the sub-areas with higher spatial resolution.
For the whole area, the contribution from this component
is a variability of 3.55 m, whereas the net contribution for
the four sub-areas varies from 1.8 m (Q1) to 2.8 m (Q3).
The explanation for this difference is not obvious, but since
this component describes a short-term interaction between
space and time, it should not be surprising that the con-
tribution from this component is sensitive to the spatial
resolution in the data. It is noted that for the C-ERA-40
data, this component was also found to be sensitive to the
temporal resolution (Vanem et al. 2012a).

It is reassuring then to observe that the seasonal com-
ponent behaves very similarly for all areas that have been
investigated. The estimated expected seasonal variation is
found to be 5.5 m for three of the sub-areas as well as the
overall area. For the last sub-area, Q3, a slightly smaller
seasonal variation of 5.3 m is estimated, which is still com-
parable. Hence, the results for the various sub-sets of the
data are deemed to be consistent.

The perhaps most interesting contribution is the long-
term trend that can possibly be related to climate change.
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Fig. 10. Projected future trends in the significant wave height for the complete area

The estimated trend for the overall area is positive, but not
significantly so at the 90% level. For the three first sub-
areas investigated (Q1-Q3), the estimated mean long-term
trends are still positive but smaller than the overall trend
and still not significantly positive. However, for sub-area
Q4, the estimated long term trend is found to be statisti-
cally significant and also slightly stronger than the trend
estimated for the area overall. Notwithstanding the differ-
ent estimates for the trend, the fact that the overall area
has an estimated trend that falls between the other esti-
mates suggests that the results are consistent. Moreover,
the results indicate that there are large uncertainties as
to whether there are any significant trends, but that the
north-easterly corner of the overall area are expected to ex-
perience a stronger trend than the other parts of the area.
The trends extracted by the Bayesian hierarchical space-
time model are also consistent with the trend estimated by
fitting a straight line by least squares. Estimated trends
vary from 4 cm to 35 cm for the different sub-areas, with
an estimated trend of 21 cm for the overall area, and this is
believed to be consistent with the fitted straight line with
an increase of about 29 cm for the spatial mean. Further-
more, the fact that most of the estimated trends are not
statistically significant at the 90% level agrees with the re-
sults for the least square fitted linear trend (see Table 4).

The future projections are a result of the estimated
long-term trends in the data. Hence, it is expected that
future projections for sub-area Q4 are higher than for the

other areas. This is indeed what is observed, but the uncer-
tainties are large and the future projections for all areas fail
to be statistically significant. Estimated mean future pro-
jections towards the year 2100 range from 27 cm (sub-area
Q1) to 2.3 m (sub-area Q4) with an estimated expected
increase of 1.9 m for the area overall, assuming emission
scenario A2. For scenario B1, the corresponding range of
mean estimates is 9 to 72 cm. These results are regarded
as internally consistent, even though no statistically sig-
nificant future projection of monthly maximum significant
wave height is found.

Some control runs for three of the investigated areas
were performed in order to see if increasing the burn-in
would influence the results, i.e. for the overall area and
for sub-areas Q3 and Q4. These control runs indicate that
results for all but one of the model components are ro-
bust to changes in burn-in length, but that the spatial
field estimates are sensitive to increased burn-in period.
The spatial patterns of the estimated fields are similar but
the estimated average levels are different for the initial and
control runs. This is troublesome and indicates that the
time-independent component fails to converge within the
burn in period. Hence, the results for this particular com-
ponent should not be trusted. This also raises the ques-
tion of whether the other components area affected and to
what extent. Obviously, all components in the model are
interconnected, but it appears from the results that the
other components are not very sensitive to the length of
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Fig. 11. The estimated mean spatial field for sub-areas Q1 (left)- Q4 (right)

Table 5. Range of estimated values for the different model components (m)

Complete area Q1 Q2 Q3 Q4
Spatial field 7.5 - 7.8 8.0 - 8.1 7.6 - 7.8 6.3 - 6.6 7.6 - 7.9
θ(x, t > 0) -2.1 - 1.4 -1.1 - 0.70 -0.72 - 0.81 -1.6 - 1.2 -0.95 - 0.97
Seasonal component -3.0 - 2.5 -3.0 - 2.5 -3.0 - 2.5 -2.9 - 2.4 -3.0 - 2.5
Long-term trend 0.21 0.04 0.16 0.11 0.35
A2 projections 1.4 0.27 1.0 0.61 2.3
B1 projections 0.43 0.09 0.33 0.20 0.72

Trend: 90% c.i. -0.056 - 0.48 -0.23 - 0.33 -0.14 - 0.54 -0.14 - 0.32 0.025 - 0.62
A2: 90% c.i. -1.2 - 3.5 -2.5 - 3.2 -1.4 - 4.1 -2.5 - 3.2 -0.97 - 4.7
B1: 90% c.i. -0.48 - 1.2 -0.95 - 1.1 -0.6 - 1.6 -0.97 - 1.2 -0.51 - 1.7

the burn in period. This might indicate that the conver-
gence problems are isolated to the spatial field component,
even though this cannot be assured. It is also unexpected
that only the average level of the spatial field is difficult to
estimate and that the model appears to be able to describe
the spatial patterns of the fields consistently.

One explanation for the lack of convergence can be
that the spatial field is quite large, and that it therefore
takes time to explore the state space for the parameters
obtained with the Metropolis-Hastings steps. These were
drawn from a proposal distribution, and if the spatial field
is large, the joint distribution might be very narrow lead-
ing to only small steps. However, the acceptance rate for
the Metropolis-Hastings step is quite high in the simula-
tions. Another explanation could be that the model is
over-parametrised in the spatial component so that there
are many solutions that lead to a reasonable fit. Still, it is
unexpected that finding the mean level in the data should
be difficult.

At any rate, it is observed that the results for all com-
ponents except for the estimated average level of the spatial
field are consistent and that the extended burn in period
does not significantly alter these estimates. In particular,

the results agree on an increasing, albeit not statistically
significant, trend for all areas except the sub-area Q4 where
the estimated trend is significantly increasing also for the
control run.

Compared to the results for a similar analysis on the
C-ERA-40 data, the NORA10 data display less significant
long-term trends. In fact, whereas the models pick up a
statistically significant increasing trend in the C-ERA-40
data, the identified trends in the NORA10 data are only
statistically significant for one of the sub-areas that are in-
vestigated, i.e. Q4. This result is confirmed by the spatio-
temporal model and was also found by fitting a straight
line by least squares. One possible explanation for these
results might be that the C-ERA-40 data previously in-
vestigated only covered the period until 2002, whereas the
NORA10 data covers the period until 2012. A very crude
investigation into the NORA10 data suggests that there is
an increasing trend from 1958 until 2002 followed by a very
slight decreasing trend from 2002 until 2012, for the spatial
mean and spatial max time series. However, none of these
trends are statistically significant. Furthermore, for the
spatial min time series, the trend in the data is increasing
throughout the period, although never being statistically
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significant.
It is also noted that the NORA10 data were obtained by

downscaling of ERA-40 data and running a WAM model
forced by ERA-40 wind fields, and it is therefore peculiar
that the identified trends in the C-ERA-40 data for signifi-
cant wave height disappear in the NORA10 data. However,
when a similar analysis was performed on ERA-40 wind
speeds, no particular long-term trends were picked up in
the wind-speed data (Vanem and Breivik 2013).

7. Summary and conclusions

The Bayesian hierarchical space-time models for sig-
nificant wave height that have previously been applied to
C-ERA-40 data have been applied to NORA10 data for
an overlapping area in the North-East Atlantic in this pa-
per. Overall, the model seems to perform well in describing
the temporal and spatial variations in the data, although
the estimates pertaining to the average time-independent
component are found to be sensitive to the length of the
burn-in period.

Interestingly, the results from this analysis pertaining
to long-term trends contradict previous results derived from
C-ERA-40 data of significant wave height. Whereas the
analysis of the C-ERA-40 data suggested that there are
statistically significant increasing long-term trends over the
area, the identified trends in the NORA10 data are not sta-
tistically significant (except for one of the quarter-areas in-
vestigated. Possible explanations to this could be that the
geographical areas are not identical and that the NORA10
data covers 10 more recent years of data. However, similar
results would be obtained if analysing NORA10 data up
until 2002 only.

It is also noted that future projections made by the
model are uncertain and even though an expected future
increase in the monthly maximum significant wave height is
estimated, the projections are uncertain with 90% credible
intervals ranging from negative to positive trends.
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