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Abstract

Careful modelling of non-stationarity is critical to reliable specification of marine and coastal design criteria.
We present a spline based methodology to incorporate spatial, directional, temporal and other covariate effects in
extreme value models for environmental variables such as storm severity. For storm peak significant wave height
events, the approach uses quantile regression to estimate a suitable extremal threshold, a Poisson process model for
the rate of occurrence of threshold exceedances, and a generalised Pareto model for size of threshold exceedances.
Multidimensional covariate effects are incorporated at each stage using penalised (tensor products of) B-splines
to give smooth model parameter variation as a function of multiple covariates. Optimal smoothing penalties are
selected using cross-validation, and model uncertainty is quantified using a bootstrap re-sampling procedure. The
method is applied to estimate return values for large spatial neighbourhoods of locations, incorporating spatial
and directional effects. Extensions to joint modelling of multivariate extremes, incorporating extremal spatial
dependence (using max-stable processes) or more general extremal dependence (using the conditional extremes
approach) are outlined.

1 Introduction

Availability of comprehensive met–ocean data allows the effect of heterogeneity (or non-stationarity) of extremes
with respect to direction, season and location to be accommodated in estimation of design criteria. Jonathan and
Ewans [2013] review statistical modelling of extremes for marine design.

Capturing covariate effects in extreme sea states is important when developing design criteria. In previous work (e.g
Jonathan and Ewans [2007a], Ewans and Jonathan [2008]) it has been shown that omni-directional design criteria
derived from a model that adequately incorporates directional covariate effects can be materially different from a
model which ignores those effects(e.g. Jonathan et al. 2008). Directional storm peaks HS100 derived from a directional
model can be heavier tailed than that derived from a direction-independent approach, indicating that large values
of storm peak HS are more likely than we might anticipate were we to base our beliefs on estimates which ignore
directionality. Similar effects have been demonstrated for seasonal covariates (e.g.Anderson et al. 2001, Jonathan
et al. 2008).

There is a large body of statistical literature regarding modelling of covariate effects in extreme value analysis;
for example, Davison and Smith [1990] or Robinson and Tawn [1997]. The case for adopting an extreme value
model incorporating covariate effects is clear, unless it can be demonstrated statistically that a model ignoring
covariate effects is no less appropriate. Chavez-Demoulin and Davison [2005] and Coles [2001] provide straight-forward
descriptions of a non-homogeneous Poisson model in which occurrence rates and extremal properties are modelled as
functions of covariates. Scotto and Guedes-Soares [2000] describe modelling using non-linear thresholds. A Bayesian
approach is adopted Coles and Powell [1996] using data from multiple locations, and by Scotto and Guedes-Soares
[2007]. Spatial models for extremes (Coles and Casson [1998], Casson and Coles [1999]) have also been used, as have
models (Coles and Tawn [1996, 2005]) for estimation of predictive distributions, which incorporate uncertainties in
model parameters. Ledford and Tawn [1997] and Heffernan and Tawn [2004] discuss the modelling of dependent
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joint extremes. Chavez-Demoulin and Davison [2005] also describe the application of a block bootstrap approach
to estimate parameter uncertainty and the precision of extreme quantile estimates, applicable when dependent data
from neighbouring locations are used. Jonathan and Ewans [2007b] use block bootstrapping to evaluate uncertainties
associated with extremes in storm peak significant wave heights in the Gulf of Mexico.

Guedes-Soares and Scotto [2001] discuss the estimation of quantile uncertainty. Eastoe [2007] and Eastoe and Tawn
[2009] illustrate an approach to removing covariate effects from a sample of extremes prior to model estimation.

One of the first examinations of spatial characteristics of extreme wave heights was reported by Haring and Heideman
[1978] for the Gulf of Mexico. They performed extremal analysis of the ODGP hurricane hindcast data base (Ward
et al. [1978]) at a number of continental shelf locations from Mexico to Florida, and concluded that there was
no practical difference between the sites, but they did observe a gradual reduction in extreme wave heights with
decreasing water depth. Chouinard et al. [1997] took the opportunity to re-examine the spatial behaviour of extremes
in the Gulf of Mexico, when the GUMSHOE hindcast data base became available. Jonathan and Ewans [2011] used
thin–plate splines to model the spatial characteristics of events in the Gulf of Mexico. Extending the thin–plate spline
formulism to include other (possibly periodic) covariates is difficult; instead, the sample is typically pre-processed
to remove the influence of all covariates other than the (2–D) spatial, prior to model estimation using thin–plate
splines. Models estimated in this way suffer from the fact that interactions between the various modelling steps (and
the parameters estimated therein) cannot be easily quantified.

Characterising the joint structure of extremes for different environmental variables is also important for improved
understanding of those environments. Yet many applications of multivariate extreme value analysis adopt models
that assume a particular form of extremal dependence between variables without justification, or restrict attention
to regions in which all variables are extreme. The conditional extremes model of Heffernan and Tawn [2004] provides
one approach avoiding these particular restrictions. Extremal dependence characteristics of environmental variables
also typically vary with covariates. Reliable descriptions of extreme environments should also therefore characterise
any non-stationarity. Jonathan et al. [2013] extends the conditional extremes model of Heffernan and Tawn to include
covariate effects, using Fourier representations of model parameters for single periodic covariates.

The last decade has seen the emergence of useable statistical models for spatial extremes based on max–stable
processes, at least in academia. The application of max–stable processes is complicated due to unavailability of the
full multivariate density function. Padoan et al. [2010] develops inferentially practical, likelihood-based methods for
fitting max–stable processes derived from a composite likelihood approach. The procedure is sufficiently reliable
and versatile to permit the simultaneous modelling of marginal and dependence parameters in the spatial context
at a moderate computational cost. Davison and Gholamrezaee [2012] describes an approach to flexible modelling
for maxima observed at sites in a spatial domain, based on fitting of max–stable processes derived from underlying
Gaussian random process models. Generalised extreme value (GEV) margins as assumed throughout the spatial
domain, and models incorporate standard geo–statistical correlation functions. Estimation and fitting are performed
through composite likelihood inference applied to observations from pairs of sites. Davison et al. [2012] also provides
a good introduction and review. Erhardt and Smith [2011] uses approximate Bayesian computation to circumvent
the need for a joint likelihood function by instead relying on simulations from the (unavailable) likelihood avoiding
the need to construct composite likelihoods at higher computational cost.

In this work, we apply a marginal model for spatio–directional extremes to a sample of data for storm severity
on the north west continental shelf of Western Australia. The model (developed in Section 2) adopts a penalised
B-splines formulation to characterise smooth variation of extreme value parameters spatially and directionally. The
North West Shelf application is then presented in Section 3. In Section 4, we discuss model extension to incorporate
appropriate spatial extremal dependence, and also outline a non–stationary extension of the conditional extremes
model of Heffernan and Tawn [2004]).

2 Model

The objective is to estimate design criteria for individual locations within a spatial neighbourhood, accounting for
spatial and storm directional variability of extremal characteristics.
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Model components

Following the work of Jonathan and Ewans [2008] and Jonathan and Ewans [2011], summarised in Jonathan and
Ewans [2013], we model storm peak significant wave height, namely the largest value of significant wave height
observed at each location during the period of a storm event. We assume that each storm event is observed at all
locations within the neighbourhood under consideration. For a sample {żi}ṅi=1 of ṅ storm peak significant wave
heights (henceforth HS) observed at locations {ẋi, ẏi}ṅi=1 with dominant wave directions {θ̇i}ṅi=1 at storm peak HS

(henceforth “storm directions”), we proceed using the peaks over threshold approach as follows.

Threshold: We first estimate a threshold function φ above which observations ż are assumed to be extreme. The

threshold varies smoothly as a function of covariates (φ
M
= φ(θ, x, y)) and is estimated using quantile regression. We

retain the set of n threshold exceedances {zi}ni=1 observed at locations {xi, yi}ni=1 with storm peak directions {θi}ni=1

for further modelling.

Rate of occurrence of threshold exceedance: We next estimate the rate of occurrence ρ of threshold exceedance using

a Poisson process model with Poisson rate ρ(
M
= ρ(θ, x, y)).

Size of occurrence of threshold exceedance: We estimate the size of occurrence of threshold exceedance using a
generalised Pareto (henceforth GP) model. The GP shape and scale parameters ξ and σ are also assumed to vary
smoothly as functions of covariates.

This approach to extreme value modelling follows that of Chavez-Demoulin and Davison [2005] and is equivalent to
direct estimation of a non-homogeneous Poisson point process model (e.g., Dixon et al. 1998, Jonathan and Ewans
[2013]).

Parameter estimation

For quantile regression, we seek a smooth function φ of covariates corresponding to non-exceedance probability τ of
HS for any combination of θ, x, y. We might estimate φ by minimising the quantile regression lack of fit criterion

`φ = {τ
n∑

i,ri≥0

|ri|+ (1− τ)

n∑
i,ri<0

|ri|}

for residuals ri = xi − φ(θi, xi, yi; τ). We regulate the smoothness of the quantile function by penalising lack of fit
for parameter roughness Rφ (with respect to all covariates), by minimising the revised penalised criterion

`∗φ = `φ + λφRφ

where the value of roughness coefficient λφ is selected using cross-validation to provide good predictive performance.

For Poisson modelling, we use penalised likelihood estimation. The rate ρ of threshold exceedance is estimated by
minimising the roughness–penalised (negative log) likelihood

`∗ρ = `ρ + λρRρ

where Rρ is parameter roughness with respect to all covariates, λρ is again evaluated using cross-validation. The
Poisson (negative log) likelihood is given by

`ρ = −
n∑
i=1

log ρ(θi, xi, yi) +

∫
ρ(θ, x, y)dθdxdy

which is approximated by

ˆ̀
ρ = −

m∑
j=1

cj log ρ(j∆) + ∆

m∑
j=1

ρ(j∆)

where {cj}mj=1 are counts of numbers of threshold exceedances per degree longitude, latitude and storm direction,
per annum on an index set of m (>> 1) bins on a regular lattice partitioning the covariate domain into intervals of
constant volume ∆.
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The generalised Pareto model of size of threshold exceedance is estimated in a similar manner by minimising the
roughness penalised (negative log) GP likelihood

`∗ξ,σ = `ξ,σ + λξRξ + λσRσ

where Rξ and Rσ are parameter roughnesses for GP shape and scale with respect to all covariates, and roughness
coefficients λξ and λσ are evaluated using cross-validation. The GP (negative log) likelihood is given by

`ξ,σ =

n∑
i=1

log σi +
1

ξi
log(1 +

ξi
σi

(zi − φi))

where φi = φ(θi, xi, yi), ξi = ξ(θi, xi, yi) and σi = σ(θi, xi, yi), and a similar expression is used when ξi = 0 (see
Jonathan and Ewans 2013).

Return values

Return value zT of storm peak significant wave height corresponding to some return period T , expressed in years,
can be evaluated in terms of estimates for model parameters φ, ρ, ξ and σ. For any choice of covariates θ, x, y, the
return value is given by

zT = φ− σ

ξ
(1 +

1

ρ
(log(1− 1

T
))−ξ)

where all of φ, ρ, ξ and σ are understood to be functions of θ, x, y, and ρ is expressed as an annual rate of threshold
exceedance per location per 1-degree storm direction. Thus, z100 corresponds to the 100-year return value, often
denoted by HS100. Interpretation of the value of zT should be undertaken with considerable care. For example, in
the current spatio–directional case, the value of z100(θ, x, y) corresponds to the 100-year return value for storm peak
significant wave height at location (x, y) for storm directions within a 1-degree directional sector centred on direction
θ.

For estimation of directional design values per location, simulation under the fitted model (incorporating the effects
of storm directional dissipation if required) is a better alternative. In the current work, we report omni–directional
design values, and design values for directional octants of equal size, centred on cardinal and inter–cardinal storm
directions (see Section 3), estimated from simulation. The procedure for simulation, in outline, is given in Algorithm
1 below.

input: φ, ρ, ξ and σ defined on index set of covariate combinations; ρ in units of number of occurrences per
location per 1-degree storm direction per annum; return period of interest, T ; number of realisations, R

output: per location: median and 95% uncertainty for zT omni–directionally and for 8 directional sectors of
equal size centred on cardinal and semi–cardinal directions

foreach location in turn
estimate the expected total (omni-directional) number of threshold exceedances in return period (using ρ
and T );
foreach realisation in turn

sample an actual number of threshold exceedances for return period (using the expected total);
sample storm directions for threshold exceedances (using ρ);
sample sizes for threshold exceedances (using φ, ξ and σ);
foreach directional sector in turn

store maximum size of threshold exceedance, incorporating dissipation if required;
end

end
store median and 95% uncertainty for zT band (over realisations) per directional sector per location;

end

Algorithm 1: Procedure for estimation of return values by simulation
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Parameter smoothness

Physical considerations suggest we should consider parameters φ, ρ, ξ and σ to be smooth functions of covariates
θ, x, y. For estimation, this can be achieved by expressing each parameter in terms of an appropriate basis for the
domain D of covariates, where D = Dθ ×Dx×Dy. Dθ = [0, 360) is the (marginal) domain of storm peak directions,
and Dx, Dy are the domains of x- and y-values (e.g. longitudes and latitudes) under consideration.

For each covariate (and marginal domain) in turn, we first calculate a B-spline basis matrix for an index set (of size
<< n) of covariate values; potentially we could calculate the basis matrix for each of the n observations, but usually
avoid this for computation efficiency. Specifically, for Dθ, we calculate basis matrix Bθ (mθ×pθ) such that the value
of any function at each of the mθ points in the index set for storm direction can be expressed as Bθβθ for some vector
βθ (pθ × 1) of basis coefficients. Note that periodic marginal bases can be specified if appropriate (e.g. for Dθ).

Then we define a basis matrix for the three-dimensional domain D using Kronecker products of marginal basis
matrices. Thus

B = Bθ ⊗Bx ⊗By

provides a (m × p) basis matrix (where m = mθmxmy, and p = pθpxpy) for modelling each of φ, ρ, ξ and σ on
the corresponding “spatio–directional” index set (of size m). Any of φ, ρ, ξ and σ (η, say, for brevity) can then be
expressed in the form η = Bβ for some (p × 1) vector β of basis coefficients. Model estimation therefore reduces
to estimating appropriate sets of basis coefficients for each of φ, ρ, ξ and σ. The values of pθ, px, py are functions of
the number of spline knots for each marginal domain, and also depend on whether spline bases are specified to be
periodic (e.g Dθ) or not (e.g Dx and Dy).

The roughness R of any function can be easily evaluated on the index set (at which η = Bβ). Following the approach
of Eilers and Marx (e.g. Eilers and Marx 2010), writing the vector of differences of consecutive values of β as ∆β,
and vectors of second and higher order differences using ∆kβ = ∆(∆k−1β), k > 1, the roughness R of β is given by

R = β′Pβ

where P = (∆k)′(∆k) for differences of order k. We use k = 1 throughout this work. With this choice of k, heavy
roughness penalisation results in stationarity of parameters with respect to periodic and aperiodic covariates.

Computational considerations

Quantile regression estimation is performed by direct minimisation of the criterion `∗φ from a good starting solution
using a linear programming approach (e.g. Koenker 2005 and Bollaerts 2009). A starting solution is estimated
by fitting a smoothing spline to estimates of the spatio–directional quantile with non-exceedance probability τ at
each of the m covariate combinations on the index set. Poisson and generalised Pareto estimation is achieved using
iterative back-fitting (e.g., Davison 2003). Good starting solutions are found to be essential for GP minimisation
in particular. These are obtained by estimating local GP models at each of the m members of the index set (or
combinations of neighbours thereof to increase sample size), then fitting smoothing spline models for each of GP shape
ξ and scale σ. Using algorithms developed for generalised linear array models (Currie et al. 2006), direct computation
of Kronecker products of the form Bθ ⊗ Bx ⊗ By (and some other computationally-demanding operations) can be
avoided, providing large reductions in computer memory requirements and execution times. For larger problems, it
is also computationally advantageous to adopt an appropriate model cost-complexity criterion (such as AIC) as an
alternative to cross-validation, thereby avoiding the need for repeated model estimation.

3 Application

Data and regional climatology

The application sample corresponds to storm peak HS and dominant wave direction (at storm peak HS) for 6156
hindcast storm events at 1089 locations on a 33 x 33 regular grid over the North West Shelf of Western Australia for
the period 1970-2007.
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Figure 1: HS against direction for all 1089 locations. Clear variability with direction, largest HS from 90o − 130o.
Large number of small events from 260o − 310o.

The regional climate is monsoonal, displaying two distinct seasons, “winter” from April to September and “summer”
from October to March, with very rapid transitions between these, generally in April and September/October.
The winter “dry” is the result of a steady air flow from the east (South East Trade Winds) originating from the
Australian mainland, propagating over the Timor Sea. The summer “wet” is the result of the North West Monsoon,
a steady, moist flow of air predominantly from the west to south west (and to a lesser extent from the north west).
Tropical cyclones occur during summer months and are clearly the most important for extreme met–ocean criteria.
Tropical cyclones originate from south of the equator in the eastern Indian Ocean and Timor and Arafura Seas. The
most severe cyclones often occur in December and March-April, when sea surface temperatures are highest. In the
region under consideration, most storms are tropical lows or developing storms, but can be very severe nevertheless,
as exemplified by tropical cyclones Thelma (1998) and Neville (1992). Most storms passing through the region
head in a westerly or south westerly direction before turning southwards. The prevailing wave climate comprises
contributions from Indian Ocean swell, winter easterly swell, westerly monsoonal swell, tropical cyclone swell, and
locally generated wind-sea. Indian Ocean swell is a perennial feature typically, propagating from the south-west
through north-west. The largest sea states are wind generated sea states associated with tropical cyclones. Figure
1 shows a scatter plot of HS against direction, pooled over locations; HS is non–stationary with respect to storm
direction. There are a large number of small events from 260− 310o, seen also in the rose plots of Figure 2; the rate
of occurrence of large HS is also non–stationary with respect to storm direction.

3.1 Spline parameterisation

We fit the spatio–directional spline model assuming an index set of 32 directional bins x 33 longitude bins x 33 latitude
bins. Cubic splines are used for each dimension, the directional spline basis being the only periodic. Longitude and
latitude domains are characterised by 15 evenly spaced knots, and the directional domain by 32 evenly spaced knots.
Therefore, a total of 32× 18× 18 spline parameters need to be estimated.

3.2 Extreme value threshold

We estimate threshold φ, using spline quantile regression, above which observations ż of HS are assumed to be
extreme. A number of different quantile non-exceedance thresholds were examined; a 50% threshold was adopted.
Figure 3 shows a spatio–directional plot for φ. The 8 right–hand plots show φ per location corresponding to the 8
cardinal and inter–cardinal directions. Spatially, smallest thresholds occur in the south east, nearest land, whereas
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Figure 2: Rose histogram plots of HS . Size and colour of bin shows proportion of interval of HS values. Left-hand
plot shows pooled rose for all 1089 locations. Right-hand plots show direction histograms for individual locations in
the (from left to right, top to bottom) NW, N, NE, W, Central, E, SW, S and SE locations respectively. All right-
hand plots (except “central”) correspond to locations at the boundary of the spatial domain in the given direction;
the “central” plot corresponds to the centre of the spatial domain. In left hand plot, large number of smaller storms
from west, smaller number of larger storms from east north-east.

larger thresholds are seen in the north and east in more open ocean. The left–hand plot shows the direction from
which φ is largest per location. Largest thresholds correspond to the north or south east.

3.3 Rate of threshold exceedance

Next we estimate the rate of occurrence ρ of threshold exceedances using a Poisson process model with rate ρ(
M
=

ρ(θ, x, y)). Figure 4 shows a spatio–directional plot of estimated ρ. Rate ρ is seen to be relatively constant spatially,
but directionally ρ is higher for events from the west (250o-290o). This is consistent with the directional histograms
in Figure 3.

3.4 Size of threshold exceedance:

Now we model the sizes of threshold exceedance using a GP model. Figure 5 shows a spatio–directional plot for GP
shape parameter, ξ, seen to be largest in general for events from the north east and south west. Figure 6 shows the
corresponding plot for GP scale, σ, seen to be higher in general for events with directions from the east. Because of
the dependence between estimates of ξ and σ, care should be taken not to over-interpret these plots; inspection of
estimates for return values (below) is preferred.

3.5 Return value estimation

Figure 7 shows 100-year return values, HS100, estimated by simulation under the fitted model. Both omni–directional
return values and return values corresponding to directional sectors centred on the cardinal and inter–cardinal
directions are given. Directional dissipation (which plays no role in omni-directional estimation) is not included in
the octant return values. Generally, lower return values are seen in the south east corner nearest land. The highest
return values at most locations are generally from the north to north east. However the most north easterly locations
have higher return values for storms from the south east to east. Return values are generally lower for storms from
the west.
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Figure 3: Spatio–directional plot for exceedance threshold, φ. The 8 right–hand plots show the 50% threshold values
of φ for each location for 8 storm directions (from left to right, top to bottom: storms from NW, N, and NE; W and
E; SW, S and SE respectively). The left–hand plot shows the direction from which φ is largest, for each location.
Colour scale in metres.

Figure 4: Spatio–directional plot for Poisson rate of threshold exceedance ρ. The 8 right–hand plots show ρ for each
location for 8 directions (from left to right, top to bottom: storms from NW, N, and NE; W and E; SW, S and SE
respectively). The left–hand plot shows the direction from which ρ is largest for each location. Units of ρ are number
of threshold exceedances per degree longitude, latitude and direction, per annum.
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Figure 5: Spatio–directional plot for estimates of GP shape, ξ. The 8 right–hand plots show ξ for each location for
8 directions (from left to right, top to bottom: storms from NW, N, and NE; W and E; SW, S and SE respectively).
The left–hand plot shows the direction from which ξ is largest, for each location.

Figure 6: Spatio–directional plot for estimates of GP scale, σ. The 8 right–hand plots show σ for each location for 8
directions (from left to right, top to bottom: storms from NW, N, and NE; W and E; SW, S and SE respectively).
The left–hand plot shows the direction from which σ is largest, for each location.
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Figure 7: 100-year return values, HS100 from simulation. The left–hand plot shows median omni–directional return
values for each of the 1089 locations. The 8 right–hand plots show median directional sector HS100 per location for
8 directional octants centred (from left to right, top to bottom) on storms from NW, N, and NE; W and E; SW, S
and SE respectively. Colour scale in metres.

4 Discussion

In the paper, we introduce a marginal spatio–directional model for extreme storm peak significant wave height,
applied to estimation of spatio–directional design values for a neighbourhood of locations off the North West Shelf
of Australia. The model uses the peaks over threshold approach, incorporating estimation of an extreme value
threshold and the rate and sizes of threshold exceedance. Model parameters are smooth spatio–directional functions.
Cross–validation is used to estimate appropriate parameter smoothness in each case. Re–sampling techniques such
as bootstrapping can be used to estimate the uncertainty of model parameters and estimates of return values and
other structure variables. The model yields parameter estimates and design values consistent with physical intuition
and previous estimates.

The main advantage of the approach is that marginal spatial and directional variation of extreme value characteristics
is incorporated in a rational, consistent, scalable and computationally-efficient manner eliminating the need for ad-
hoc procedures such as site pooling. In isolating storm peak events, we also estimate the directional dissipation (e.g.
Jonathan and Ewans 2007a) of storms across locations. This allows us also to estimate design criteria for arbitrary
directional sectors for a given location together with the omni-directional estimate, in a consistent manner.

4.1 Conditional extremes

Spline representations are also useful in non–stationary conditional extremes modelling based on the approach of Hef-
fernan and Tawn [2004]. Jonathan et al. [2014] introduces a general–purpose approach, common to all inference steps
in conditional extremes inference. Non-crossing quantile regression estimates appropriate non–stationary marginal
quantiles simultaneously (for a range of non–exceedance probabilities) as functions of covariate; these are necessary
as thresholds for extreme value modelling, and for standardisation of marginal distributions prior to application of
the conditional extremes model. Marginal extreme value and conditional extremes modelling is performed within a
roughness–penalised likelihood framework, with cross–validation to estimate suitable model parameter roughness. A
bootstrap re–sampling procedure, encompassing all inferences, quantifies uncertainties in, and dependence structure
of, parameter estimates and estimates of conditional extremes of one variate given large values of another. The
approach is validated using simulations from known joint distributions, the extremal dependence structures of which
change with covariate. The approach is illustrated in application to joint modelling of storm peak significant wave
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height and associated storm peak period for extra-tropical storms at northern North Sea and South Atlantic Ocean
locations, with storm direction as covariate.

4.2 Spatial extremes

We are currently extending the marginal model presented here to incorporate multivariate spatial dependence,
using composite likelihood and censored likelihood methods, so that joint characteristics of extremes of storm peak
significant wave height across multiple locations can also be estimated and studied. At present, however, spatial
extremes methods suffer from a number of restrictions which may cause biased inferences. Firstly, models are
typically developed using block maxima rather than threshold exceedances, since spatial extremes theory is motivated
by consideration of component-wise maxima, with full likelihoods replaced with approximations constructed as
weighted sums of pairwise likelihoods. Censored composite likelihood approaches permit more efficient analysis of
threshold exceedances (e.g. Huser and Davison 2012, draft). Secondly, spatial extremes models only admit certain
types of extremal dependence structure (e.g. Ledford and Tawn [1997]), namely perfect independence or asymptotic
dependence; they do not admit asymptotic independence in particular. An extension to incorporate asymptotic
independence has recently been proposed by Wadsworth and Tawn [2012]. The generalised Pareto process is another
promising emerging description for spatial extremes (Ferreira and de Haan 2014). In general, the extremal dependence
structure of spatial extremes will itself be non–stationary; estimation of covariate effects in the dependence model will
therefore also be necessary, using the spline approach outlined above. For example, the dependence structure of the
simplest max-stable process for two spatial locations, known as the Smith process (Smith 1990), is parameterised in
terms of a bivariate Gaussian covariance matrix (e.g. Jonathan and Ewans 2013), therefore requiring the estimation
of three parameters (two variances and one covariance), all of which in principle may vary spatio-directionally. Other
more realistic max-stable processes typically have larger numbers of dependence parameters (e.g., Davison et al.
2012).

Spatial extremes methods are nevertheless potentially of great value in met–ocean design, since they provide a
framework within which extremal behaviour of complete ocean basins can be modelled, incorporating appropriate
marginal and dependence structure and avoiding the need for site pooling in particular. It might be possible that
in future, only one extreme modelling task would be necessary per hindcast. That model, for the whole ocean
basin, could then be interrogated routinely to estimate design values for one location, or joint design values for
an arbitrary number of arbitrary locations. The ocean engineer would then no longer in principle need to perform
further site–specific extreme value analysis.
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