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1. Introduction

The continuous increase in the accuracy of operational
wave models is widely recognized. Still, there is room
for improvement in the definition of wave conditions by
making use of the available information globally provided
by remote sensing. Lefèvre (2012) showed the benefit of
significant wave height, wind speed and spectral observa-
tions in a last-generation wave prediction system.

Since Evensen (1994) first proposed the Ensemble
Kalman Filter (EnKF) as an alternative to the Extended
Kalman Filter, where flow-dependent background errors
were based on an ensemble, several approaches to the
model update or analysis step have been introduced.
More recently, Ott et al. (2004) proved the feasibility of
an entirely local scheme in the so-called Local Ensemble
Kalman Filter (LEKF) and Hunt et al. (2007) improved
the efficiency of calculations in the Local Ensemble Trans-
form Kalman Filter (LETKF). The 4D-LETKF code
shared by T. Miyoshi (Miyoshi and Yamane 2007) and
updates has been experimentally implemented in a storm
surge ensemble prediction system with very encouraging
results (Etala et al. 2012) merging altimeter and tidal
gauge storm surge observations. In this article, we will
describe an exploratory application of the same scheme
to the multivariate surface vector wind and significant
wave height data assimilation in a coarse NOAA/NCEP
WAVEWATCH III R©(Tolman 2009) global implementa-
tion.

It is widely known that in its forcing problem, wind sea
quickly looses memory of its initial state. A rather short-
living impact along the forecast range is then achieved
by the assimilation. On the contrary, the improvement of
wind and wave mean conditions during development can
provide more long-lasting effects in the resulting swell.
Improvement in the 6-hour forecast is demonstrated,
although such matter is not especifically addressed for
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longer ranges in this article.

The data assimilation algorithm is described in section
2, where we will briefly explain the basics of the advanced
method used in the mean parameters analysis, as well as
our approach to the update of wave spectra. The assimi-
lation performed on two storm events and assesed by inde-
pendent buoy data contributes to illustrate some features
in section 3. We will discuss the results in section 4 and,
finally, we will summarize conclusions and our thoughts on
future work in section 5.

2. The Data Assimilation Method

The general approach of the EnKF combines the flow-
dependent background errors provided by an ensemble
prediction and the observations to build the analysis
ensemble, including the analysis uncertainty. The analysis
ensemble so obtained provides the initial state to a new
ensemble forecast cycle. Given an n-dimensional model
state x and an m-member model ensemble, δXf is the
m × n matrix containing the m perturbations of the
ensemble. The ist member perturbation is defined as its
difference to the ensemble mean δxi = xi − x̄. We will
denote vectors in lowercase and matrices in uppercase.

The forecast step is performed globally in the model
space and it is common to any EnKF:

Xf
i = M(Xa

i−1) (1)

Then, the forecast error covariance matrix provided by the
ensemble is

P f
≈ (m− 1)−1δXf (δXf)T (2)

The observation operator H applied to the model variable
provides the “model observation”, i.e., the model in
the observation space yf = H(xf ). In the ensemble,
δY = H(δXf) is the perturbation of the model observa-
tion to the ensemble mean.

The p available observations yo introduce the new
information in the observational increment or innovation
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in yo − yf . The way these observations are considered in
the analysis step to update the background (section a) is
what distinguishes LETKF from other EnKF methods.

Some localization in space and time is required to over-
ride spurious background perturbations covariance, not re-
lated to the local background uncertainty. An arbitrary
local patch is defined at every analysis point where the
“smoothed localization” approach increases the observa-
tional error with distance to the analysis point, so that the
influence of an observation is half its value at a distance σ
while decreasing exponentially. σ is called the “localization
scale”. The weight function 3 is applied to the inverse R
matrix in the calculations.

W(dist) = e−dist2/2σ2

(3)

An analogous localization in time limits the observation
influence within the assimilation window to a certain time
localization scale. Furthermore, any corrections introduced
by the observations only take place in the scale of the sig-
nificant wave height (hs), zonal wind component (uw) and
meridional wind component (vw) ensemble perturbations
covariance and cross-covariance, as will be shown in sec-
tion 3.

a. The analysis step: LETKF

The LETKF determines the analysis ensemble locally in
the space spanned by the ensemble, as a linear combination
of the background perturbations. Therefore, the updated
model state becomes:

xa = x̄f + (δx)fwa (4)

where w is a gaussian random vector, defined so that its en-
semble mean w̄f = 0 and covariance P̃ f = (k−1)−1I. The
authors demonstrate that the solution for w also minimizes
the original analysis cost function and analysis equations
analogous to EnKF are solved for the w ensemble in the
local m×m ensemble space, substantially simplified by the
variable transformation.

P̃ a = [(m− 1)I + (δY )fTR−1(δY )f ]−1 (5)

where R is the observational error covariance matrix of
the locally used observations, modified by the localization
3.

The LETKF belongs to the class of the so-called “deter-
ministic” or square-root EnKF. It updates in a single step
the ensemble mean (equation 6) and retrieves the analy-
sis ensemble perturbations from the covariance matrix in
equation 7.

w̄a = P̃ a(δY )fTR−1(yo − ȳf ) (6)

δwa = [(m− 1)P̃ a]1/2 (7)

Equations 5 to 7 for the transformation weights W are
those actually solved by the algorithm in the local space
of the ensemble. The full analysis ensemble is then built
through 4 back into the global model space. Alternatively,
we may choose to update the analysis mean or the deter-
ministic model in a hybrid-type approach by

x̄a = x̄f + (δx)f w̄a (8)

The analysis ensemble perturbations in this scheme are
close to the original background ensemble perturbations,
as

(δx)a = (δx)f (δw)a (9)

from 4 and 8.

b. Updating the Wave Model Spectra

Several techniques have been intended to determine
the local wave spectra from mean parameters and also to
extend the impact of the assimilation along the forecast
cycle. For instance, Voorrips et al. (1999) determined the
wind from the wave height to use it as a smoother to the
significant wave field. Here, we adapted the approach
by Lionello et al. (1996) and Breivik and Reistad (1994),
updated as in ECMWF (2013), except that we do not
make any assumptions on wind duration. Instead,we
introduce the analysed and background surface wind
field into the calculations, assuming no drag change in
the analysis. We consider the total wind sea fraction as
provided by the model when splitting the analysed hs into
windsea and swell.

The updated spectrum, where f is frequency, while the
f superscript denotes forecast or background, is

Ea = AEf (Bf, θ) (10)

From the dimensionless wave energy ε∗ = Eg2/u4
∗ and ε∗ =

5.054∗10−4f̄−2.959
∗ with the dimensionless mean frequency

f̄∗ = u∗f̄ /g, where u∗ is the friction velocity and E =
(H/4)2, being H the partitioned significant wave height
and U the wind speed, then

B =
f̄f

f̄a
=

(

Uf

Ua

)0.3518 (
Ha

ws

Hf
ws

)0.6759

(11)

and

A = B

(

Ha
ws

Hf
ws

)2

(12)

for the windsea part of the spectrum, and

B =

(

Ha
sw

Hf
sw

)
1

2

(13)

2



and

A = B

(

Ha
sw

Hf
sw

)2

(14)

for the swell part of the spectrum.

The procedure described in this section completes the
wind and wave data assimilation process into the wave
model. Analysed vector wind and significant wave height
fields are the input to the assimilation routine where lo-
cal 2-D spectra are inferred for every grid point using 10.
The integral parameter fields and spectra after the wave
spectra retrieval herein described are the final result of the
assimilation and provide the ensemble restart to the new
forecast cycle.

3. Experiments and results

The data assimilation experiments presented in this
section correspond to the period of 17 to 29 December
2012. They were set on a 6-hour ensemble forecast
cycle for a global 1◦ × 1◦ WAVEWATCH III R©model
ensemble. 4 daily global ensemble wind fields where
obtained from the NCEP Global Ensemble Forecast
System (GEFS) in the THORPEX Interactive Grand
Global Ensemble (TIGGE). Buoys available from the
JCOMM Wave Forecast Verification Project (WFVP) are
used here as independent data for assessment. Vector wind
observations from ASCAT scatterometer and significant
wave heights from altimeters on Jason 1 and Jason 2 and
the predicted model outputs were distributed in hourly
slots within every 9-hour assimilation window (T − 6hrs,
T + 3hrs). Thus, the observational departure from the
background ensemble mean (yo− ȳf) in equation 6, as well
as the “model observation” perturbation (δY )f reflect an
evolving background field in this 4-D approach. The time
localization scale (equation 3) used in the experiments for
every observation is 1 time slot, forward and backward.
In agreement with results elsewhere, the data assimilation
presents a spin-up period of the order of 10 - 12 cycles (2.5
- 3 days). In figure 1 we present the average observational
departure from the background ensemble mean vs. the
assimilation cycle.

The localization parameter σ in equation 3 is 7◦ lat/lon
in these runs, while the local patch to select the observa-
tions used at each grid point is aproximately 25◦ lat/lon.
The column of the error covariance matrix P f (equation
2) corresponding to the point 50◦N , 140◦W is partially
shown in figure 2 to illustrate the scale of the perturbations
in the NE Pacific storm event on 19 December 18:00. All
times referred are GMT. The normalized δhsδhs, δuwδhs

and δvwδhs are presented in the upper, central and lower
panel, respectively.

Fig. 1. Evolution of the background observational depar-
ture mean and standard deviation with the assimilation
cycle. The observations considered are those used by the
analysis. The spin-up period was about 2-3 days (8-12 cy-
cles).

The observations used in three of the assimilation cycles,
together with the hs analysis increments produced by the
4D-LETKF are plotted in 3. The analysis starts correcting
the NE Pacific storm noticeably, mainly position and size,
on 19 December 06:00 (upper panel). It is worth high-
lighting that only wind information was available on site
at 18:00 (center panel). Figure 4 shows the 6-hour forecast
hsensemble mean produced by this full-assimilation run
and that from the control no-assimilation cycle at buoys
46184 and 46208 offshore the Canadian West coast (buoys
locations are plotted in figure 5).

Supporting the initial correction to wave generation, the
waves generated were further updated in succeeding cycles
by the scatterometer and altimeters at day 20 00:00 (figure
3lower panel) and the southward swell is still corrected
by altimeters one day later (not shown). On the other
hand, the hs contrast between the full and control runs
two days later is shown in 5. The swell delay without the
cycle-by-cycle analysis update is more remarkable. Buoy
51101 North of Hawaii confirms these results after day 21
in figure 6 (buoy location in figure 5).

Similarly, the assimilation is assessed and validated at
buoy 56006 in figure 7, Australia SW coast (buoy location
in figure 8 upper right panel). On 19 December, the 6-hour
hs prediction is impacted by the overall assimilation pro-
cess. Waves produced by a storm moving northeastward
along a track located south of the continent are detected at
the western coast around 06:00. The normalized 2-D wave
energy spectra (not shown) provide evidence of the pres-
ence of waves due to the storm passing south. Even though
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Fig. 3. hs analysis increments (analysis - background) together with the altimeters and scatterometer tracks used by
the analyses in the assimilation windows for 19 December 2012 06:00, 18:00 and 20 December 2012 00:00 (upper, center
and lower panel, respectively).
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Fig. 2. δhsδhs (upper), δuwδhs (center) and δvwδhs

(lower) ensemble perturbations covariances corresponding
to point 52◦N , 142◦W on 19 December 2012 18:00 GMT,
normalized with their maximum values. Circles in the up-
per panel refer to localization scale (inner) and local patch
(outer).

Fig. 4. 17 to 24 December 2012 hs(m) from buoys 46184
(upper) and 46208 (lower), off-shore North America West
coast: red line and dots; green: 6-hour forecast in the data
assimilation runs; blue: id., no data assimilation.
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Fig. 5. Difference in the 6-hr predicted hs(m), data assim-
ilation vs. no data assimilation cycles, 21 December 18:00,
together with buoys used in the validation.

Fig. 6. 17 to 24 December 2012 hs(m) north of Hawaii.
Buoy 51101: red line and dots; green: 6-hour forecast in
the data assimilation runs; blue: id., no data assimilation.

Fig. 7. 17 to 24 December 2012 hs(m), SW Australia.
Buoy 56006: red line and dots; green: 6-hour forecast in
the data assimilation runs; blue: id., no data assimilation.

small hs analysis increments are observed at the buoy lo-
cation at 06:00 (figure 3 upper panel) in correspondence
with a scatterometer swath and altimeter tracks in the as-
similation window, the storm has been corrected along its
track. The wave train has been sistematically delayed by
the assimilation, matching better the buoy observations
than the no-assimilation case. Such as in the North Pacific
case, we observe a swell that has been corrected at its re-
mote generation area in the past and such correction has
been reinforced by sucessive updates.

4. Discusion

The mean statistics of the innovation to the background
produced by the altimeter observations, shown in figure
1, measures the discrepancy of the hs background field
with the observations. Evaluated along the assimilation
cycles, it may be considered that it evaluates the benefit
introduced by the assimilation. We can see in the figure
that the mean and standard deviation of the background
observational departure is sistematically reduced during
the spin-up and it remains quasi-steady thereafter.

The wind observations impact the results in two ways.
The cross-covariance of vector wind - wave uncertainties
from the ensemble would produce increments to wind
wave fields in the analysis step through equation 8, in
conjunction with altimeters and even while there were no
hs observations. The update to the windsea part of the
model wave spectra (equations 10-12) explicitly introduces
the new wind intensity. From figure 3 upper panel we
can see that altimeter and scatterometer observations
are available in SW Australia for the 19 December 2012
06:00 cycle. We illustrate for that case in 8 how the
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final hs after the full assimilation process differs form the
intermediate result from the 4D-LETKF. In particular,
for the windsea part of the spectra, the analysed wind
field and the wave field partitioning further impact the
assimilation. We should note that the wind waves field
shown in the upper right panel is only illustrative, as it
corresponds to the deterministic operational run and not
to these experiments. Potential sources of error at this
step may be the extra weight given to the background
through the conservation of the total windsea fraction
and the actual wind to be considered in the partitioning.
Some notable changes in storm positioning and/or wind
intensity found due to the scatterometer, would justify a
revision thereof. Also, in some cases, the change in wind
speed would support the need to consider friction velocity
in equation 11.

Although we have not gone deeply into the update of
the wave spectra in this work, we implicitly assigned an
extra weight to the wind analysis by not considering any
limited wind duration in equation 11. On the other hand,
as from the relatively short and disrupted time periods
run so far, we could not conclude that the latter would be
a particularly reliable parameter to be conserved from the
background wind field. This matter should be considered
further.

Instead, we did find evidence of the benefit of the
use of vector wind observations in the determination
of wave generation through the improvement in storm
positioning, intensity definition and timing. The wave
fields during the storm shown in NE Pacific (figure 4)
were repeatedly corrected by both scatterometer and
altimeter observations (figure 3) by considering the “errors
of the day” in the background fields (figure 2). That led
us to a persistent long-term impact on the waves and
swells, (figure 5) as detected by the Hawaiian buoy shown
in figure 6. Although only 6-hour forecasts have been
considered here, it is a reasonable expectation that longer
prediction ranges are also impacted in this sense. It should
be noted that the results presented here in the shape of a
“deterministic” solution are based on the ensemble mean
of the coarse wave model ensemble, which has been built
as a prototype with the only purpose of assessing the
impact of this data assimilation scheme.

Despite our preference so far to emphasize the deter-
ministic approach through the ensemble mean, the way
in which this scheme provides ensemble initialization
is very important to a persistent impact. The LETKF
property in equation 7 to keep closeness of background
and analysis perturbations enables us to easily hold
separated restarts to the ensemble members throughout
the runs. On the other hand, it is well known that the

abundance of satellite observations in the swath might
act to the detriment of the independence of observation
errors, hence the randomness assumption for the diagonal
matrix R in equation 5. The analysis ensemble spread
lowers in coincidence with scatterometer tracks, even while
we used the 25-km resolution product. The spread has
been artificially sustained in these experiments by using
some additive inflation (20% of the background ensemble
spread) while getting results back into the model ensemble
space in equation 9.

5. Concluding remarks

We introduced an advanced method for wave data
assimilation, which we applied here to the significant
wave height. The consideration of flow-dependent errors,
including an evolving background error covariance matrix,
and multivariate wind-wave analysis provide an up-to-date
efficient use of satellite observations, to produce realistic
analysis increments even in sparse data cross-track areas.
The 4-D algorithm facilitates the consideration of the
right time scale for wave evolution while incorporating the
new information (innovation) provided by asyncronous
observations in the assimilation window. The applica-
tion of an EnKF approach makes the method and its
implementations independent from the prediction model,
hence, from model changes. The latter property makes it
particularly suitable for operational use.

The joint use of wind and wave observations allowed us
to avoid some assumptions in the wave spectra retrieval,
even though we have introduced an extra influence of
the analysed wind, beyond the multivariate analysis of
wind and wind waves. Even while this algorithm can
be improved, the need to infer the whole spectra from
integral parameters is a very weak point of every data
assimilation system, unless more complete sources of
spectral information can be made available. In this sense,
we suggest that the most promising ways of improvement
should be explored by using the spectral partitioning
capability in the WAVEWATCH III R©model.

Preliminary results are encouraring, but extensive
testing and further enhancement are still needed in the
scheme. Improved ways to make use of the analysed winds
in the wave model shoud be explored. For instance, forcing
the model with the new winds at any previous step from
the assimilation, could lead to a more realistic wind sea
fraction in the partition of the analysed significant wave
height for the spectrum update.

The immediately following step would be to also update
the deterministic model, as in the usual approach in hybrid
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Fig. 8. 19 December 2012 06:00, SW Australia. Upper panel: surface wind intensity (m/s) background (left) and analysis
(center), wind waves field as from the deterministic run and buoy location (right). In the lower panel, background hs (m)
(left), analysis after 4D-LETKF (center) and after assimilation into the model (right), respectively. The extra influence
of the analysed wind field in the hs final assimilation is evident.

methods. While in the latter, the ensemble predictions are
initialized with any other method, this algorithm would
also initialize the ensemble. The proper ensemble ini-
tialization to truly represent forecast uncertainties in the
short range, so far done with the help of additive inflation,
still needs close attention. The matter of how to adequate
our analysis methods to high resolution scatterometer data
is still to be revised. Moreover, the considerations made by
Yang et al. (2009) on the LETKF transformation weights
in an atmospheric prediction system suggest that the ex-
tension of the analysis to multiscale models could be rather
economic and straighforward. Those authors proved that
the smoothness of the transformation weights allows to ini-
tialize higher resolution models in a single-step approach.
Such strategy is still to be tested in our particular problem.
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