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Abstract

We offer a new method for determination of the wind input te$fR responsible for flux of energy
and momentum transfer to the wind-driven sea. This methbdsed on analysis of experimental data
collected at different sites and their comparison with il solutions of Hasselmann equation.The
validity of new wind input term is confirmed through comparisof the results of numerical simulation

of Hasselmann equation with experimental data.

1 Introduction

Today, the vast majority of oceanographers believe infsatisry description of the wind-driven sea by

—

kinetic Hasselmann equation for wave actisin= N (k, 7, t) (see, for instance [1]):
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wherew;, = v/gk — dispersion law for gravity waves,,; is nonlinear interaction ternf; = S;,, + Sgiss IS
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the source term responsible for energy input from wind assdigation due to white capping and interaction

with turbulence.

The S,,; term is completely known. This is a complicated nonlineaegnal operator possessing deeply

hidden symmetry. The "conservative” kinetic equation
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preserves the total wave action and formally preserveggraard momentum. This is not a real conserva-
tion — at any given initial data in a finite time equation Eq). f(@ms Kolmogorov-like tails carrying energy

and momentum to the area of small wave numbers [4].

On the contrary, our knowledge abdijtis poor. Creation of reliable, well justified theory 8f, is hindered
by strong turbulence of the air boundary layer over the sease Even the most crucial for this theory

vertical profile of the mean horizontal wind velocity is n@operly known.

The data of direct measurementsSyf are scarce. As a result, we currently have at least dozeruofhe
models ofS;,,. A scatter between different models is large.For instatieeDonelan model [6] predicts;,,
approximately five times higher than Hsiao-Shemdin mod2]. [Comparison of different models 6f,, is

presented in the article [13].

It is pity, but understanding of dissipation ters;,, is not better. The theory is not developed, the exper-
imental data are far from being complete. The form$gf, used in operational models are heuristic and

badly justified.

The situation is aggravated by widely distributed opinioattin a real sea the nonlinear term has the same
order of magnitude as the source term, i®. ~ S,;. This viewpoint was formulated by O.Phillips [3]

in 1985 and since this time is commonly accepted. Some au{mnelan at al., [7, 11]) express even
more radical opinion, assuming th&y, is negligibly small with respect t6,. According to this opinion,
the wind-driven instability of gravity waves is arrestedwgve-breaking. These speculative theories are

supported neither by the theory, nor by experimental data.

In reality the nonlinear terny,,; surpasses the source tefinat least by the order of magnitude. Let us

formulate this statement in more accurate terms. It is re#sle to present, in a simple form

Atsmallk, v(k) > 0 and the source term is pumping the surface waves due to (doeréype instability.
For largek, v(k) < 0. In the spectral range decrement of dampirig) depends also on overall wave
steepnesg ~ (Vn?)'/2, but we will not discuss this question in this article. Thalieear termsS,, is given

by the following expression:

2
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S, can be naturally split in two parts:

Spi = Fj, — Ty Ny, (4)



Here
Fk - 7T/ |Tkk1k2k3‘25k+k17k27k35wk+wk1 7wk27wk3 (Nklng + Nkl ng - ngng) dkldedk?) (5)

is the effective damping of gravity waves due to nonlineavevateraction. Our recent numerical experi-
ments [8], [10] show that for almost all situations >> v, and nonlinear dissipation essentially surpass the
instability which is arrested not by white capping, but noear wave interaction. In a typical wind-driven
sea the forcing ternt), and the dissipation term, /N almost compensate each other, whileremains

small, but very important correction.

The dominance of,, is indirectly supported by the following facts. Both in fetbmited and duration-
limited cases the dependencies of total energy and meaneiney of a wind-driven sea on duration and
fetch are given by power-like functions. This fact can belaix@d in one simple way: as far &§; is the
dominating term, one can describe the wind-driven casedffitst approximation by conservative equation
Eq. (2). Itis clear from the beginning that this descriptismot complete. We should expect that this

equation has a vast variety of solutions.

A natural class of them consists of self-similar solutiomsich are studied both for the duration limit case
Cé—];f = 0 and for the fetch-limited cas@—’ = 0. In both cases self-similar solutions depend on two anyitra
parameters, which should be found by matching with the sotenn.

This procedure can be compared with derivation of the hyglrathic equations from the classical Boltz-
mann kinetic equation. A general solution of the statiorfesnogeneous Boltzmann equation depends on
three free parameters — density, mean velocity and temyperaiacroscopic equation imposed on these

guantities composes the system of hydrodynamic equation.

Similar program for the Hasselmann equation was announcedii previous paper [5], but so far was
not realized. In this article we modify this idea for detemation of 5;,, from experimental data. We will
exploit the fact that the sourced Hasselmann equation fertaia special form of, has unique self-similar

solution, which can be compared with experimental datas Ebmparison makes possible to deternfipe

2 Theoretical approach — self-similar solution

Self-similar solutions of conservative kinetic equati@) (ere studied in the articles [1], [13]. In this
chapter we study self-similar solutions of the forced kimetjuation

Oe(w, 0)
a0

=S+ 7w, 0)e(w, ) (6)



Heree(w,0) = %N(E, 0), k= “Tf is the energy spectrum. We will not use the detailed streabfiss, ;. It

is enough to mention that by dimensional consideration

w5e 2
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g
As far as Eq.(6) formally conserve energy, one can preSgrds follows:
oP
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The stationary solutio®® = P, = const leads to the spectrum
pl/3
E(w) =y 54 (9)

Here P, — energy flux to high wave numbers aty is the Kolmogorov constant. Our recent numerical

calculation givel; ~ 47 - 0.219 = 2.75 [8].

Eq.(6) has a self-similar solution if
Y(w,0) = aw'™* f(0) (10)

Looking for self-similar solution in the form

e(w,t) = ' (w,t9) (11)
we find that
1
1 s+ 1 (12)
2qg —1
p = =5 (13)

FunctionF'(§) — £ até — oo and has a maximum &t~ &,. Thereafter we assume thak 2. In this case
we can assume thd@t(¢ ~ ¢4 até — oo. In other words, energy spectrum has Zakharov-Filonenko ta

e(w) ~ w™1. Total energy input is given by integral

P = /OOO Y(w, 0)e(w, 0)dw (14)

This integral converges at — oo, thus main energy input takes place in a neighborhood of gketsal

maximumw, ~ % . For largew

— @—3q-

2—s
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(15)

More accurately,

(16)



In Eq.(16)u is the wind velocity and’, = w% is the phase velocity. As faras, ~ ¢, C, ~ 19,¢ ~ C;/q,

pP—3q

CT
e~ (17)
In other words
— —1
g b 3¢ _ 3¢q (18)
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Remembering that = ﬁ we get¢ = % We ended up with the following result:
pgU'=<C5 _
2—s
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Now supposing = 4/3 andy ~ w3, we get¢ = 1/3, which is exactly experimental regression line

prediction.
Because it is known from regression line Fig.1 that 1/3, we immediately get = 4/3 and the wind
input term

Swind =~ w7/3 (21)

One should note that dependence (21) has already beentprEdycResio and Perrie [18] from dimensional

consideration.

3 Experimental evidence

The structure of wind input term found from self-similar saateration is just a conjecture. To check its
relation to reality, we are looking first at the experimem@dence presented by Resio at al. [15] through

analysis of the data sets from multiple experimental ifetiahs scattered around the world.
To understand the relation of experimental evidence anardieal results from the previous section, one
should notice another notations for the spectrum (9) us¢tbij

2masug
E, (w) = o

. Fu(k) = K=" (22)

wheres = %a4ug*1/2.

These notations are based on relation of spectral defsity and F'(k) in frequencyf = ;% and wave-

numberk bases:

5-E(f) (23)
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Figure 1: Correlation of equilibrium range coefficiertt with (u3c,)'/?/¢'/? based on data from six dis-

parate sources. Adopted from [15]



wherec, = ‘;—: is group velocity and) = +/gk is the linear dispersion.

The experimental data [15] show that energy spectii(i) estimated through averaging k°/2F (k) >,
can be approximated by linear regression line as a funcfignie,)/?g~*/2. Fig.1 shows that the regres-

sion line
1 2 .\1/3 —1/2
B = 5044 [(U,\Cp) - Uo} g (24)

indeed, seems to be a reasonable approximation of thesevatises. Heren, = 0.00553, ug = 1.93
m/sec, ¢, is the spectral peak phase speedant the wind speed at the elevation equal to a fixed fraction
A = 0.065 of the spectral peak wavelength /k,, wherek, is the spectral peak wave number. Resio at al.

[15] assume that all winds to follow neutrally stratified ésghmic profile

uy = i = (25)

K 20

having Von Karman coefficient = 0.41, wherez = \ - 27 /k, is the elevation equal to a fixed fractian=
0.065 of the spectral peak wavelengdth/k,, wherek, is the spectral peak wave number, apd= acu?/g

subject to Charnok 1955 [17] surface roughness with= 0.015.

4 Numerical simulation

To check out self-similar conjecture (21) we performed nuocad¢ simulation of Hasselmann equation

ony
8tk = Snl + Swind + Sdiss (26)
with new input term taken in the form:
A 4/3 A
Spima = 0.2 L9y (LN = S Pair g 39073 (27)
Pwater w* u* Pwater

This model also needs to be supplied with the dissipatian t&f,,, which is explicitly unknown, but can
be taken into account in some way. It was proposed by Res]ptfi# white-capping dissipation terfy;,
can be introduced implicitly through energy spectral tadgortional tof—> and stretching frony; = 1.1

to f...x = 2.0. To date, this approach is confirmed by both experimentatmbsions [16] and numerical
experiments, providing effective direct cascade sink fogrgy entering the wave system from the wind

input.

Typical picture of the directional energy spectrum for tlasex, = 10 m/sec is presented on Fig.2. Once
can distinct three separate areas of the spectrum — argasabfa peak, intermediate portion of the spectral

tail proportional tof ~* and high-frequency portion of the spectrum, proportiongit°.
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Figure 2:Typical picture ofn ¢( f) as a function ofn f, wind speed:. = 10.0 m/sec. Solid line — directional

spectrum, dashed line — spectryim?, dash-dotted line — spectruyfir®.
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Figure 3:Compensated spectruf(k)k°/? as a function ofn f, wind speed. = 10.0 m/sec



Compensated spectrufii(k) - k°/2 is presented on Fig.3. One can see plateu-like region reggerfor
k—5/2 behavior, equivalent t¢—* tail in frequency presentation. This exact solution of Bgas found by

Zakharov and Filonenko in 1966 [9].

Now we are turning to direct comparison of the numerical $ation results of Eq.26 — 27 with the experi-

mental results collected by Resio at al. [15] on the grapl(Eig

Fig. 4 presents the plot of functioh = F (k) - k%% as a function of parametér3C,)/?/g'/? for four
different runs, corresponding to wind speeds- 2.5, 5.0, 10.0,20.0 and show good correspondence with
the regression line for values af= 2.5,5.0,10.0. The results corresponding to= 20.0 are a bit off the

regression line, but exhibits the same slope.

Another important relationship can be derived from joimisideration of Egs. (19), (22) and (23):

(UQCp)l/B

10003 = 3°=5

(28)

The plot of relationship Eq.(28) on Fig. 4 shows close bebravi theoretical, experimental and numerical

considerations.

5 Conclusion

We offer theoretical explanation to experimental reg@sdine, obtained from experimental data from
6 independent sites. It consists in existence of self-aingiblution of Hasselmann equation supplied with
specific wind input term. For this form of wind input term wesalove good correspondence of experimental,
theoretical and numerical results in wide range of wind dpeelhe new form of wind input term can

improve the quality of ocean waves operational models &sec
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Figure 4: Experimental, theoretical and numerical evigeoc the single graph far0003 as a function
of (u3c,)'/3/g/?. Experimental result: dotted line — experimental regastine from Fig.1. Theoretical
result: dashed line — theoretical relation Eq.(28). Nup@iesults: crosses correspondite- 2.5, stars to

u = 5.0, rectangles ta = 10.0, triangles tou = 20.0
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