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Abstract

We offer a new method for determination of the wind input termSin responsible for flux of energy

and momentum transfer to the wind-driven sea. This method isbased on analysis of experimental data

collected at different sites and their comparison with analytical solutions of Hasselmann equation.The

validity of new wind input term is confirmed through comparison of the results of numerical simulation

of Hasselmann equation with experimental data.

1 Introduction

Today, the vast majority of oceanographers believe in satisfactory description of the wind-driven sea by

kinetic Hasselmann equation for wave actionN = N(~k,~r, t) (see, for instance [1]):

dN

dt
=

∂N

∂t
+

∂ωk

∂~k

∂Nk

∂~r
= Snl + Ss (1)

whereωk =
√
gk – dispersion law for gravity waves,Snl is nonlinear interaction term,Ss = Sin + Sdiss is

the source term responsible for energy input from wind and dissipation due to white capping and interaction

with turbulence.

TheSnl term is completely known. This is a complicated nonlinear integral operator possessing deeply

hidden symmetry. The ”conservative” kinetic equation

dN

dt
= Snl (2)
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preserves the total wave action and formally preserves energy and momentum. This is not a real conserva-

tion – at any given initial data in a finite time equation Eq. (2) forms Kolmogorov-like tails carrying energy

and momentum to the area of small wave numbers [4].

On the contrary, our knowledge aboutSs is poor. Creation of reliable, well justified theory ofSin is hindered

by strong turbulence of the air boundary layer over the sea surface. Even the most crucial for this theory

vertical profile of the mean horizontal wind velocity is not properly known.

The data of direct measurements ofSin are scarce. As a result, we currently have at least dozen of heuristic

models ofSin. A scatter between different models is large.For instance,the Donelan model [6] predictsSin

approximately five times higher than Hsiao-Shemdin model [12]. Comparison of different models ofSin is

presented in the article [13].

It is pity, but understanding of dissipation termSdiss is not better. The theory is not developed, the exper-

imental data are far from being complete. The forms ofSdiss used in operational models are heuristic and

badly justified.

The situation is aggravated by widely distributed opinion that in a real sea the nonlinear term has the same

order of magnitude as the source term, i.e.Ss ∼ Snl. This viewpoint was formulated by O.Phillips [3]

in 1985 and since this time is commonly accepted. Some authors (Donelan at al., [7, 11]) express even

more radical opinion, assuming thatSnl is negligibly small with respect toSs. According to this opinion,

the wind-driven instability of gravity waves is arrested bywave-breaking. These speculative theories are

supported neither by the theory, nor by experimental data.

In reality the nonlinear termSnl surpasses the source termSs at least by the order of magnitude. Let us

formulate this statement in more accurate terms. It is reasonable to presentSs in a simple form

Ss = γ(k)N(~k,~r, t) (3)

At smallk, γ(k) > 0 and the source term is pumping the surface waves due to Cherenkov-type instability.

For largek, γ(k) < 0. In the spectral range decrement of dampingγ(k) depends also on overall wave

steepnessµ ≃ (∇η2)1/2, but we will not discuss this question in this article. The nonlinear termSnl is given

by the following expression:

Snl = π

∫

|Tkk1k2k3 |2δk+k1−k2−k3δωk+ωk1
−ωk2

−ωk3

(Nk1Nk2Nk3 +NkNk2Nk3 −NkNk1Nk2 −NkNk1Nk3) dk1dk2dk3

Snl can be naturally split in two parts:

Snl = Fk − ΓkNk (4)
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Here

Γk = π

∫

|Tkk1k2k3|2δk+k1−k2−k3δωk+ωk1
−ωk2

−ωk3
(Nk1Nk2 +Nk1Nk3 −Nk2Nk3) dk1dk2dk3 (5)

is the effective damping of gravity waves due to nonlinear wave interaction. Our recent numerical experi-

ments [8], [10] show that for almost all situationsΓk >> γk and nonlinear dissipation essentially surpass the

instability which is arrested not by white capping, but nonlinear wave interaction. In a typical wind-driven

sea the forcing termFk and the dissipation termΓkN almost compensate each other, whileSs remains

small, but very important correction.

The dominance ofSnl is indirectly supported by the following facts. Both in fetch-limited and duration-

limited cases the dependencies of total energy and mean frequency of a wind-driven sea on duration and

fetch are given by power-like functions. This fact can be explained in one simple way: as far asSnl is the

dominating term, one can describe the wind-driven case in the first approximation by conservative equation

Eq. (2). It is clear from the beginning that this descriptionis not complete. We should expect that this

equation has a vast variety of solutions.

A natural class of them consists of self-similar solutions,which are studied both for the duration limit case

dN
dx

= 0 and for the fetch-limited casedN
dt

= 0. In both cases self-similar solutions depend on two arbitrary

parameters, which should be found by matching with the source term.

This procedure can be compared with derivation of the hydrodynamic equations from the classical Boltz-

mann kinetic equation. A general solution of the stationaryhomogeneous Boltzmann equation depends on

three free parameters – density, mean velocity and temperature. Macroscopic equation imposed on these

quantities composes the system of hydrodynamic equation.

Similar program for the Hasselmann equation was announced in our previous paper [5], but so far was

not realized. In this article we modify this idea for determination ofSin from experimental data. We will

exploit the fact that the sourced Hasselmann equation for a certain special form ofSs has unique self-similar

solution, which can be compared with experimental data. This comparison makes possible to determineSin.

2 Theoretical approach – self-similar solution

Self-similar solutions of conservative kinetic equation (2) were studied in the articles [1], [13]. In this

chapter we study self-similar solutions of the forced kinetic equation

∂ǫ(ω, θ)

∂θ
= Snl + γ(ω, θ)ǫ(ω, θ) (6)
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Hereǫ(ω, θ) = 2ω4

g
N(~k, θ), k = ω2

g
is the energy spectrum. We will not use the detailed structure ofSnl. It

is enough to mention that by dimensional consideration

Snl ≃ ω

(

ω5ǫ

g

)2

ǫ (7)

As far as Eq.(6) formally conserve energy, one can presentSnl as follows:

Snl = −∂P

∂ω
(8)

The stationary solutionP = P0 = const leads to the spectrum

ǫ(ω) = C1

P
1/3
0

ω4
(9)

HereP0 – energy flux to high wave numbers andC1 is the Kolmogorov constant. Our recent numerical

calculation giveC1 ≃ 4π · 0.219 = 2.75 [8].

Eq.(6) has a self-similar solution if

γ(ω, θ) = αω1+sf(θ) (10)

Looking for self-similar solution in the form

ǫ(ω, t) = tp+qF (ω, tq) (11)

we find that

q =
1

s+ 1
(12)

p =
2q − 1

2
(13)

FunctionF (ξ) → ξ atξ → ∞ and has a maximum atξ ∼ ξ0. Thereafter we assume thats < 2. In this case

we can assume thatF (ξ ≃ ξ−4 at ξ → ∞. In other words, energy spectrum has Zakharov-Filonenko tail

ǫ(ω) ∼ ω−4. Total energy input is given by integral

P =

∫

∞

0

γ(ω, θ)ǫ(ω, θ)dω (14)

This integral converges atω → ∞, thus main energy input takes place in a neighborhood of the spectral

maximumω0 ≃ ξ0
tp−3q . For largeω

ǫ ≃ tp−3q

ω4
≃ t

2−s
2(s+1)

ω4
(15)

More accurately,

ǫ(ω, φ) =
µgu1−ξCξ

p

ω4
(16)
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In Eq.(16)u is the wind velocity andCp =
g
ωp

is the phase velocity. As far asωp ≃ t−q, Cp ≃ tq, t ≃ C
1/q
p ,

ǫ ≃ C
p−3q

q
p

ω4
(17)

In other words

ξ =
p− 3q

q
=

3q − 1

2q
(18)

Remembering thatq = 1

s+1
, we getξ = 2−s

2
. We ended up with the following result:

ǫ(ω, φ) ≃
µgU1−ξCξ

p

ω4
g(φ), µ ≃ 6 · 10−3 (19)

ξ =
2− s

2
(20)

Now supposings = 4/3 andγ ≃ ω7/3, we getξ = 1/3 , which is exactly experimental regression line

prediction.

Because it is known from regression line Fig.1 thatξ = 1/3, we immediately gets = 4/3 and the wind

input term

Swind ≃ ω7/3 (21)

One should note that dependence (21) has already been predicted by Resio and Perrie [18] from dimensional

consideration.

3 Experimental evidence

The structure of wind input term found from self-similar consideration is just a conjecture. To check its

relation to reality, we are looking first at the experimentalevidence presented by Resio at al. [15] through

analysis of the data sets from multiple experimental installations scattered around the world.

To understand the relation of experimental evidence and theoretical results from the previous section, one

should notice another notations for the spectrum (9) used in[15]:

E4(ω) =
2πα4ug

ω4
, F4(k) = βk−5/2 (22)

whereβ = 1

2
α4ug

−1/2.

These notations are based on relation of spectral densityE(f) andF (k) in frequencyf = ω
2π

and wave-

numberk bases:

F (k) =
cg
2π

E(f) (23)
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Figure 1: Correlation of equilibrium range coefficientβ with (u2
λcp)

1/3/g1/2 based on data from six dis-

parate sources. Adopted from [15]
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wherecg = dω
dk

is group velocity andω =
√
gk is the linear dispersion.

The experimental data [15] show that energy spectrumF (k) estimated through averaging< k5/2F (k) >,

can be approximated by linear regression line as a function of (u2
λcp)

1/3g−1/2. Fig.1 shows that the regres-

sion line

β =
1

2
α4

[

(u2

λcp)
1/3 − u0

]

g−1/2 (24)

indeed, seems to be a reasonable approximation of these observations. Hereα4 = 0.00553, u0 = 1.93

m/sec, cp is the spectral peak phase speed anduλ is the wind speed at the elevation equal to a fixed fraction

λ = 0.065 of the spectral peak wavelength2π/kp, wherekp is the spectral peak wave number. Resio at al.

[15] assume that all winds to follow neutrally stratified logarithmic profile

uλ =
u⋆

κ
ln

z

z0
(25)

having Von Karman coefficientκ = 0.41, wherez = λ · 2π/kp is the elevation equal to a fixed fractionλ =

0.065 of the spectral peak wavelength2π/kp, wherekp is the spectral peak wave number, andz0 = αCu
2
⋆/g

subject to Charnok 1955 [17] surface roughness withαC = 0.015.

4 Numerical simulation

To check out self-similar conjecture (21) we performed numerical simulation of Hasselmann equation

∂n~k

∂t
= Snl + Swind + Sdiss (26)

with new input term taken in the form:

Swind = 0.2
ρair
ρwater

ω
( ω

ω⋆

)4/3

, ω⋆ =
g

u⋆
,

ρair
ρwater

= 1.3 · 10−3 (27)

This model also needs to be supplied with the dissipation term Sdiss, which is explicitly unknown, but can

be taken into account in some way. It was proposed by Resio [16], that white-capping dissipation termSdiss

can be introduced implicitly through energy spectral tail proportional tof−5 and stretching fromfd = 1.1

to fmax = 2.0. To date, this approach is confirmed by both experimental observations [16] and numerical

experiments, providing effective direct cascade sink for energy entering the wave system from the wind

input.

Typical picture of the directional energy spectrum for the caseu = 10 m/sec is presented on Fig.2. Once

can distinct three separate areas of the spectrum – areas of spectral peak, intermediate portion of the spectral

tail proportional tof−4 and high-frequency portion of the spectrum, proportional to f−5.
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Figure 2:Typical picture ofln ǫ(f) as a function ofln f , wind speedu = 10.0 m/sec. Solid line – directional

spectrum, dashed line – spectrumf−4, dash-dotted line – spectrumf−5.
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Figure 3:Compensated spectrumF (k)k5/2 as a function ofln f , wind speedu = 10.0 m/sec
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Compensated spectrumF (k) · k5/2 is presented on Fig.3. One can see plateu-like region responsible for

k−5/2 behavior, equivalent tof−4 tail in frequency presentation. This exact solution of Eq.26 was found by

Zakharov and Filonenko in 1966 [9].

Now we are turning to direct comparison of the numerical simulation results of Eq.26 – 27 with the experi-

mental results collected by Resio at al. [15] on the graph Fig.(1).

Fig. 4 presents the plot of functionβ = F (k) · k5/2 as a function of parameter(u2
λCp)

1/3/g1/2 for four

different runs, corresponding to wind speedsu = 2.5, 5.0, 10.0, 20.0 and show good correspondence with

the regression line for values ofu = 2.5, 5.0, 10.0. The results corresponding tou = 20.0 are a bit off the

regression line, but exhibits the same slope.

Another important relationship can be derived from joint consideration of Eqs. (19), (22) and (23):

1000β = 3
(u2cp)

1/3

g1/2
(28)

The plot of relationship Eq.(28) on Fig. 4 shows close behavior of theoretical, experimental and numerical

considerations.

5 Conclusion

We offer theoretical explanation to experimental regression line, obtained from experimental data from

6 independent sites. It consists in existence of self-similar solution of Hasselmann equation supplied with

specific wind input term. For this form of wind input term we observe good correspondence of experimental,

theoretical and numerical results in wide range of wind speeds. The new form of wind input term can

improve the quality of ocean waves operational models forecasts.
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Figure 4: Experimental, theoretical and numerical evidence on the single graph for1000β as a function

of (u2
λcp)

1/3/g1/2. Experimental result: dotted line – experimental regression line from Fig.1. Theoretical

result: dashed line – theoretical relation Eq.(28). Numerical results: crosses correspond tou = 2.5, stars to

u = 5.0, rectangles tou = 10.0, triangles tou = 20.0
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