The Importance of a Coastal Resilience Index for Community Development

3rd Coastal Hazards Symposium
November 4, 2011
Lesley Ewing, PE, D.CE., M.ASCE
Costas E. Synolakis, Ph.D., M. ASCE

Motivation

- Coasts are high hazard areas vulnerable to storms, hurricanes, tsunamis, floods
- 10s to 100s of millions dollars in global coastal damage annually
- High numbers of coastal fatalities
- Rising sea level will bring increased problems
- Finite resources and financial capital for disaster

Motivation

Methodology

- What is Resilience
- Lessons learned from recent disasters
- What worked and what did not work
- Community options for risk management & resilience
- Fit options into a coastal resilience framework or index

Conclusions

- Community resilience is location-specific
- Current approach to coastal disasters will continue the trend of massive community interruptions, property damage and fatalities
- Disaster-responses stress available resources
- Coastal resilience covers all aspects of a disaster

Adapted from NOAA & Mobile Bay Chamber of Commerce(2007 - 2008) Mobile Bay Region Creating a Strategic Framework for Regional Growth and Resilience

Engineering Coastal Resilience

Engineering Community Resilience

Hazard Events

"Project"
Design
Conditions

"Project" Performance

Hazard Variability

Hazard Events

"Project"
Design
Conditions

"Project" Performance

Project and Performance

Variabilit

Hazard Events

"Project"
Design
Conditions

"Project" Performance

Variability in Expectations

Hazard Events

"Project"
Design
Conditions

"Project"
Performance

GRC: 3944TN 1415R4E
MGRS: 548 WJ 38145 99135
DDI: 28MARI 1 TOT: 11042

SEVERE DAMAGE TO PORT AND SURROUNDING AREA
DEBRIS ORSERVED IN WATER

FLOATING DEBRIS INCLUDE
ORJECTS LARGER THAN 1M X 4M

UNCLASSIFIED

NOT FOR COMMERCIAL PURPOSES

Government will provide coastal protection

Poor understanding of "100-year" event

Community Expectations

Structures are safe

Event-based Resilience

Event-based Resilience

Community Control of Resilience

Community Control of Resilience

Hazards Are Local

CRESCENT CITY, CA
Mean Tide Range 1.5 m
Diurnal Tide Range 2.1 m

CRESCENT CITY, CA

Predicted Max. Amplitude – 2.5 m Observed Max. Amplitude - 2.47 m (8.2 ft)

Aerial image of Inner Boat Basin from Google Earth Aerial of boat damage courtesy of T. Williams

Damages: \$50 Million in CA 1 fatality

Community Control of Resilience

Lessons Learned from Recent Disasters

Lessons Learned -- Elevation

Otanabe, near Fudai RIver

Tar

Lessons Learned from Recent Disasters

Community Resilience

Kamaishi Tsunami Breakwater ~ \$1.6 billion initial construction

20-meter caissons

Kamaishi Tsunami Breakwater

Lesson Learned: Redundancy

Community Protection can be Costly

Kamaishi Tsunami Breakwater ~ \$650 million reconstruction

Resilience after a Disaster

Recovery – Pre-event Preparedness

Elements of a Coastal Resilience Index

Elements of a Coastal Resilience Index

Pre-Event Conditions	Life Safety Efforts	Initial Resilience	Post-event Recovery
Risk Analysis	Early Warnings	Resistance	Robustness
Project Performance	Preparedness & Evacuation Plans	Redundancy	Adaptation

Conclusions

- Community resilience is location-specific
- Current approach to coastal disasters will continue the trend of massive community interruptions, property damage and fatalities
- Disaster-responses tax available resources
- Coastal resilience covers all aspects of a disaster

