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Two Major Types of Data Needs
Forecasts:

• Go/No-Go Evacuation Decision
- long lead time (3-5 days)
- must be conservative
- uncertainty “factored in”

• Storm-Approach Operations
- time-phased information
- late evacuation routing
- gate/spillway decisions
- uncertainty quantified

• Post-Storm Operations
- time-phased information
- accurate damage assessment
- accurate systems assessment
- critical recovery decisions

Planning/Risk Mitigation:

• Accurate Hazard Climatology
- consistent data set
- long period of record
- uncertainty quantified
- climatic variability

• Accurate Response Specification
- human response
- system response

• Quantified Risk/Alternatives 
- time-phased options
- climatic variability
- uncertainty quantified
- Objective “cost” estimates

Net Change:  We need more accurate information and 
uncertainty estimates

Current forecast
systems focus on
this problem



Risk is often strongly related
to exceeding some threshold 

So what does it mean when
we say 5m ± 0.8m in this
situation??



Uncertainty is usually either neglected or used 
primarily as a reason to neglect something

Forecast Planning

Forecasting and Planning
typically have different
needs and will be affected
differently by uncertainty
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Let’s use a 
block-by-block
forecast tool!!

EMA:I need my
forecast 4 days
before landfall!!

Let’s use this
“super-accurate”

10-year weather record
to estimate

the 1,000,000-yr surge!!! 



Conclusions -
 

Forecast
•

 
Forecast uncertainty is dominated by errors 
in storm track, intensity and size – but 
random errors and bias in the surge model 
are also significant

•
 

Problems with high ratios of false positives 
and/or false negatives are very storm and 
site dependent not a generalized property

•
 

False positives can be reduced by 70-90% by 
making a surge-based decision at t-24 vs. t- 
72.

•
 

The use of arbitrary MEOWS and MOMS does 
not have a well-defined statistical interpretation 
and leads to difficult-to-quantify and potentially 
unnecessary factors of conservatism which can 
detract from public trust in the forecast 



Conclusions –
 

100-yr to 1000-yr
•

 

We should abandon the annual exceedance 
probability (1/return period) frequency approach to 
design and consider “design-life” within our design 
framework

•
 

The determination of design values in the 100-yr to 
1000-yr range are significantly affected by 
uncertainty in both the model capabilities and in the 
sampling of the basic forcing characteristics

•
 

Resampling does not represent all uncertainty in 
estimates

•
 

The impact of uncertainty on design estimates in the Gulf 
of Mexico are typically in the 10 -

 

20% range for a (0.01 
chance of flooding over 50 years)



Conclusions –
 

Extreme Extremes

•
 

Uncertainty due to sampling variability 
creates a larger and larger risk as the record 
length becomes larger

•
 

The practice of using the mean estimate for 
the very-long-term estimates leads to a large 
underestimate in the risk

•
 

The Estimated Maximum Possible Surge 
(EMPS) is very much affected by uncertainty 
created by epistemic (lack of knowledge) 
factors as well as by aleatory (sampling 
uncertainty) factors
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Forecast Example:  New Orleans

Using Response Surface 
Approach shown in
previous talks at this
conference.

fast
calibrated
avaliable
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If we let xi be the probability of a parameter value given the
deterministic forecast value, i.e.
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Then:

yields a good estimate of the statistical forecast characteristics

Using pre-calculated surges
from Response function

approach



Errors ( needed to define p(xi
 

))

•
 

Use NHC along-track error estimates –
 and convert from wind to Cp 

•
 

Use NHC intensity error estimates 
•

 
Estimate size errors by variation over time

•
 

Estimate forward speed error from NHC 
along-track error estimates

•
 

Estimate angle error at coast from straight 
line geometry



SMALL Storm Rmax = 10nm LARGE Storm Rmax = 25nm

Simple interpretation of
error in surges due to
error in landfall location



Using scaling analyses from the Response Surface, we 
can estimate the percentage impacts that each of the 
different types of error might have on forecast surges

And the winner
is (as expected)
landfall location



IHNC 1 (Q305)

Central Pressure = 955 mb
Reference Longitude = 90 degrees

Median
Value

10%
Value

Could use this
directly with a loss
function to optimize
a decision.



Probability of exceeding 2 selected 
thresholds given 3 central pressures and 

a perfect forecast at Site 305
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False
positives

False
negatives

Consequences of false negatives can be much larger than false positives

Based on deterministic
estimate



Additional Results

•
 

A bias in the models had the same effect 
on the statistics as (artificially) changing 
the decision threshold 

•
 

The ratio of false positives can be very 
high if either
–

 
The deterministic surge is close to the 
decision threshold (4-8), or

–
 

The decision threshold is chosen to be very 
conservative (10-20)   



•
 

Some projects have very long lifetimes (dams, ports, 
nuclear power plants, levees around urban areas, etc.)

•
 

The likelihood of a failure over an m-year lifetime 
is 1-(1-F(η))m

 

which strongly depends on m!
•

 
For very long return periods the relationship 
asymptotically approaches the limit such that the 
actual design return period is effectively divided 
by m

•
 

These should not be treated as equivalent in 
terms of the annual probability for design 
needed to achieve a given level of protection



Designs in the 100 –
 

1000 year 
range 
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 is the surge height
 is a numerical operator (model)
 is a parameter affecting the surges
 is a random deviation characterized by a
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These terms are a combination of aleatory
and epistemic uncertainty

One can experiment numerically with the impact that the
magnitude of different terms has on the surge probabilities

Resampling does not capture the epistemic errors in the models
nor the aleatory errors in the parameter probabilities!   These tend
to be as large or larger than the resampling variability



An Estimate of the Upper Limit for 
Storm Surges (PMSS or EMPS?)

•
 

In designs and safety analyses of large, long-
 term structures we are asked to supply 

estimates of annual exceedance
 

probabilities in 
the range of 10-6

•
 

This sounds like a very rare event unless one 
assumes there are 100 such facilities and that 
each facility is expected to last for 100 years.

•
 

A logical question then relates to the relative 
error in an error estimate and the possible 
existence on an upper limit.
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Uncertainty in an estimate is very difficult to estimate
without some assumptions regarding parent distributions
and the “effective” number of samples (which depends 
on the autocorrelation attributes of the phenomenon).
For extremes, the overall characteristics tend to vary as
a function of the return period and the number of samples.

Unfortunately, this makes the estimation of very-low-
probability events very uncertain.  For hurricane surges
the typical rms value of the uncertainty is in the 10%
range for the 100-year return period (assuming a Gumbel
Distribution).

For very low frequencies (very large T), the confidence limits
become much larger than the predicted surge values. 



2 2

0 ( )

L
a d a d

w w

c V c Vdx L
g h x g h

 
 

   
    
   


a d

w a

c p L
h g

 
 

  
  
 

*
1

* * *
x

L Rp
h L

  


 
   

  * * *

*

1

1 1

x
R R Rwhen
L L L

Rwhen
L


     

      
     

 
  

 

* *
1

* * *
x t

L tRp
h L t

   
 

   
     

   
* * *

*

1

1 1

t
t t twhen
t t t

twhen
t


  



     
      

     
 

  
 

Becomes Asymptotic

NO

YES

YES

Functional dependence of the surge on forcing
parameters as they become large-valued.

Storm Intensity

Storm Forward Speed

Storm Size

If we focus on the “tail” of the distribution, we see
that some physical limits appear.

Irish and Resio (2010)

But, what is the
1 in 1,000,000
value of this??



Incorporation of Uncertainty into 
Extreme Extremes

•
 

NRC-related work
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Comparison of Estimated Central 
Pressures with and without Uncertainty

Actual risk line

TheGumbel Distribution
become a Frechet or 

Fisher-Tippett II
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Best-fit GEV and Gumbel

 

distributions for GOM central 
pressures along with the data plotted with a simple 

plotting position, where n= number of years in the sample and m=rank, for all 
storms in years with 4 or less storms occurring in that year in left panel and all
storms in years with more than 4 storms.
NOTE:  Over a 30 mb difference (>5 ft surge for New Orleans area) at 100-yr return period!
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Other surprises
still await us!



“Imagination is more important
than knowledge” A. Einstein

Artist - Carl Lundgren

Questions?


	Slide Number 1
	Two Major Types of Data Needs
	Slide Number 3
	Uncertainty is usually either neglected or used primarily as a reason to neglect something
	Conclusions - Forecast
	Conclusions – 100-yr to 1000-yr
	Conclusions – Extreme Extremes
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Errors ( needed to define p(xi))
	Slide Number 13
	Using scaling analyses from the Response Surface, we can estimate the percentage impacts that each of the different types of error might have on forecast surges
	Slide Number 15
	Probability of exceeding 2 selected thresholds given 3 central pressures and a perfect forecast at Site 305
	Slide Number 17
	Slide Number 18
	Additional Results
	Slide Number 20
	Designs in the 100 – 1000 year range 
	An Estimate of the Upper Limit for Storm Surges (PMSS or EMPS?)
	Slide Number 23
	Slide Number 24
	Incorporation of Uncertainty into Extreme Extremes
	Comparison of Estimated Central Pressures with and without Uncertainty
	Slide Number 27
	Slide Number 28

