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KQJ Introduction
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WIND WAVE is a complicated physical phenomenon
at the air-sea interface, having stochastic features.
Thus, it should be described in a spectral representation:

75 + C 75 + C 75 _
Ot = 0x 0y
Here, S(k,x,7)=S is the 2D spectrum in the space, x, and time, #;
the Lh.s. is the full derivative - math. part of model
(not discussed below);
the r.h.s the source function, F, phys. part of model ,
describing mechanisms of wind wave evolution.
It is used to represent I’ as a sum of 3 (separate) mechanisms:

energy input, /N, energy lost, DIS, nonlin en. conserv transf, VL.
3

F=IN-DIS + NL (D




Initial equations

Principally, all terms of S.F. must be derived from the basic eqs.

du =
,OZ =—V,P— pg +1(X,1);|._.x) (2)
P =0
o 3 (ou) = (3)
_on %
U] einy =+ WV21D) 4)
uz z=—0 O
3)

There is a special procedure to do it (Miles 1957, Hass 1962, 1974,
Zakharov 1974).But usually, each term is derived separately,

due to complexity the of system and nonlin feature of (2)-(3).
Finally, the resulting eq. (1) should be valid on the scales
of hundreds of dominant wave period 7,=27/0c, and wave length
L =2nc’/g,where o, isthesp. peak frequency(>10%s, 103 m)




Nl-term

NL-term (energy transfer mechanism due to nonlinearity )
is the best investigated one.

Under some approximation, it is governed by the integral
NL(k,) =47 [[[ dk,dk,dk M2, o F3(S, 0808050, X 6)
X0(0y + 0y, — 0 — 0o (K, +k, —k; —k,)
called the Hasselmann’s Kinetic integral (KI) (Hasselmann, 1962).

This point is out of our present consideration.

For completeness, we should say that

the point of VL-term representation,

optimally corresponding for application in numerical models,

is exhaustively studied in Polnikov(Nonlin. Proc. in Geophys. 2002, 2003).

The FastDIA was proposed and successively verified. The NL problem Wasl -
clese
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IN-term (energy pumping mechanism)
is rather well studied theoretically and experimentally.
The main theoretical result is the Miles’ theory (1960). It reads

In=C, (o, 6, W)oS (o, 0) . (7)

where C, is the main fitting parameter for In-term.

Problem is to find the form of increment function 5 (...).
There are two ways: num. simulations, or experim. measurements.

At present, the best way is to combine the main theoretical
and experimental features of 5(...).
Parameterization of 3 (...) plays remarkable role
in the point of parameterization for the DIS-term.
Here we do need no more details about /V-term besides form (79!
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DIS-term (wave energy dissipation mechanism)
is the least studied one!!!

There were a lot of attempts to derive a kind of function DIS(S):
analytical theory (Hasselmann, 1974: Dis ~ S),

dimensional considerations(Donelan(2001): Dis ~.S*° , Phillips(1985): Dis ~ S° ,
semi phenomenological theory (Tolman&Chalikov, 1996): Dis ~ S,

numerical simulations (Chalikov,2010; Zakharov et al, 2007+...)

+

a lot of empirical investigations which dealt with the breaking

processes, only(!) (see the last review by Babanin, 2009).

Herewith, there are not clear the following items:
(1) general represent. of DIS(S): first, second, or higher power in §;
(2) any (widely) recognized general theory for DIS,

(3) any empirical result (in_the spectral form) related to the
measurements of the whole aggregate of dissipative processes,
including turbulence of the water upper layver (WUL). 7




®A_P

@
*
L

4 RO

At the air sea interface
shear currents,

wave,

and turbulent motions
present simultaneously.
One cannot separate
them by equipment!!!

Thus, one cannot
separate I/Nput,
NLin transfer
and DISsipation
processes

Nevertheless, some optimists try to do it??

Y Remarks of measurements for DIS(S)(

WiND PROFILE
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Let us see several of the results.



Example of empirics for DIS-term

Measurement results (Young, Babanm JPO 2006)

From
the picture
we state:

Breaking is not directly a dissipation, it is a spreading of energy?!!

f =0.39 Hz
p
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f%% Empirical features of breaking
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Despite of numerous empirical uncertainties,
there are several empirical effects useful to our aim.

Following to Young&Babanin (2006), they are as follows :

E1) Threshold feature of the wave breaking process;

E2) Influence of the long waves breaking on the intensity of
breaking for shorter waves;

E3) Different feature of the dissipation rate for dominant waves
and for waves in the tail part of wave spectrum;

E4) More intensive breaking of waves running at some angle to
the mean wind direction
(i.e. the two-lobe feature of the angular function for breaking intensity)

The true theory should have some of these features.

Nevertheless, on the basis of the analysis of present measurements,
we state that function DIS(S) cannot be measures, principally!
There is not a proper tool!! 10




Initial theor. ideas about DIS-term

Due to impossibility to measure the spectral form of DIS-term (!!),
the solution of the problem is to derive a general theory,
which could give a basis for DIS-term parameterization.

In 1986 the author has proposed, and in Polnikov (1994, 1995)
has justified a representation of DIS-term in the form

Dis = vy (G, 6. W, S)*i2*S (0, ~S*(c, 0), (8)

where v;(...) has a meaning of an effective turbulent viscosity
provided by the aggregate of all dissipative processes in WUL

(including: breaking, sprinkling, capping, shear current instability, and so on).

The problem is to find v (...) theoretically!!!

11



Similarity consideration

From dimensional consideration we can accept
DIS(o,W,S) = const -cS(o,0)- DS, W, A4, ¢,..) (8a)

where |©(S,7, 4,¢,..)|is the function of dim-less parameters of the syst:

spectrum S(0)=0"S(0,0)/ g’ =&’ (o) 3
current frequency c=0lo0,

wind W=Wolg

age A=c,=c, /W

steepness e =ka(k) = Vs.

The main problem is to define the power of S(...) for func Dis(S).

To do this we apply
the spectral representation of |©(5./7,4,¢,..)|in a local approximation

O(..) =Y a,(4,6,W,£)8" (8b)
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Then, using the existence of small parameter

. 8
$=0'S(6,0)/ g =, =0.01<<1 (8¢)
the balance at high frequencies of the form
IN(G.W,S.) - DIS(G.W,S,) = 0 - (D
and the linear function of input term
INW,S)= B(c,0,W)sS (c, 6 ) (8e)
accumulating all linear terms of SF as the corrected IN-term, we get
DIS(,W,S) = 68(5,0)- &, (A, 6, 1,6)S = (A, 6,1, £) 2 (0 9
g | (8D

The form of «, (A, c%,l/f/,g) is following from eq. (8d),
used as eq. for equilibrium spectrum shape S.,(0,0)
The principal result is the quadratic form: DIS(S )¢ S* (as in (81))!

13

A _more general theoretical consideration is given below.




Za>  The main theory (turb. viscosity model).

* *

Oy 1. Basic statements
1. The main fundamental of the theory states that on the scales of

Eq. (1) validity, the most general reason for wind wave
dissipation is a turbulence of the water upper layer.

Herewith, specification of processes producing the turbulence is
quite unprincipled.

2) The velocity field in a wavy water layer can be written in the
form of two constituents

u(x,z,t)=u (x,z,0) +u(x,z,1)| )
where

u_ is the potential wave velocity field,

u is the turbulent one, uncorrelated with u .

3) The elevation field, 77(X.?) , has a meaning of continuous field,
permitting introduction of partial derivatives

14
Hasselmann’s hy otheses of “a disturbance weak in mean”).
p



2. Reynolds stress

Substitution of (9) into (2) and (4) after averaging over turb. scales
gives for wave motions the following eqs: (written below in the tensor kind)

o1 o1 O<uu. >
— L4 H ——=—0ofb. . — L J B
TR Lt Z]: R (10)
AR . (11)
Here, the new term in the r.h.s. of (10),
Z@<u;u'j>zp , (12)
T Ox, l

is the “forcing”, resulting in the dissipation of a wind-wave energy
(details can be found in my full paper text).

Terms < ulu] >= 7, are the well known Reynolds stresses (R.S.).

Our task is to close R.S. via wave motion variables 7and U .
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To continue the consideration, we get the foll. assumptions:

(1)The relative value of Reynolds stress tear , P ,1s much greater
of the dynamical nonlinear term, |> «, ==/,

I Ox
Thus, we get the linearized eqs. (but with nl-forcing term!!
i g8, =—P(w) (13a)
and
on _
PALE (13b)

(they are written at the surface)
+ two eqs. in whole water layer (used for description of the vertical structure).

(2) The R.S. closure has the complicated nonlinear (!) form

() =< 1@ 125+ Gon an)][ L @u, o)+ ensax > U

J

(Prandtle-like closure, using gradients of velocity and elevation fields !!!)
16
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Introducing definitions for velocity potential variables

uw(X9 Za t) — §3¢(X7 Za t) (D(X’ t) = ¢(X’t)‘z=77(x) 9 (15)
rewrite the governing eqs in the form
o __ on _0oo incipl 16
v gan+ P(n,®)| » % o (prlnmp eeqs) ( )

% _, N
Other two eqs (A =0 and o = ) are used for vert. structure definition.(17)

Here|P(;,0) = (V,)'[P(5,u)]| IS the new form of the forcing term.

After using the Fourier-decompositions (F.T.)

n(x,t) = const - jexp[z(kx)]nk(t)dk ¢(X,z,t) = const - jexp[l(kx)]f (D)o ()dk  (18)
we find the follow. final reduced system of governing eqs
O, + g7, =T1(k, 7, @,) (19)
M = kD, (20)
Where 1k, ,0,)=F '[P ®)]| IS the next form of the ‘forcing’. 17
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First step: reducing system (19)-(20) to 1 equation
M + gkny = —kI1(K,77,,77,) : 21)
Second step: introducing the generalized variables (Hass,1974)

a' =0.5(7, +s$ﬁk) (s = + ,0()=(b") . (22)
That gives to Eq. (21) the form

i +isothya, =—iso(k)Tk 7,73)/ 2g . 23)
Third step: defining the spectrum (by the wave ensemble averaging)

<<da a. >>=S(K)S(s +5)5(k -k (24)
and getting the final eq for wave spectrum evolution(Hass,1974)

S(K,{) = 2? Im << T1(k,7, .7, )a. >>= —DIS(S) (25)

Solution of (25) needs specification of |I1(k,7,,7,)| 11! 18
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Take into account the following points:
(a) The generalized variables ¢, have a linear form of 7,7, ;
(b) The structure of R.S.(77,u) permits to express it via g’ ;

(¢) The turb.scale-averaging (brackets <...>) leads to destruction
of the wave-like phase structure under <..> in F.T. For example,

J‘dx{exp(—zk X) <A4. I I T'(k,,k,)exp(ik x)exp(ik,x)n, 77, dkdk, > | = Z Tk, k)7,

k k, K.k,

The said allows to write the final expression forI1(k,7,,7,)
in the most simple nonlinear kind (no convolution forms)

Nk np.m)= 27, kKajal| (26)

S; ,Sj,k

An explicit kind of multipliers 7;;, and a certain representation of

the quadratic form in the r. h. s. of (26) is not principled,

as far as the main physical feature: the nonlinearity of forcing,

is conserved. 1°
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i 7. Traditional solution of nonlin. Eq.

To solve typical nonlinear eq. (23), we use traditional
method of egs. chain for statistical moments of the
generalized variables.

It has 3 steps.

(1)To multiply amplitude Eq. (23) by the proper c. conjugated
generalized component, and to make the ensemble averaging.

After some algebra, we have evolution eq. of the form

SKy=—i Y fi(k,s1,52,s3)T > L 27)

sl,s2,s3

sl,s2,83 __ s1 82 83 . .
where |Li..; =<<a.a, a, >>| js the third order moment.

20
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s1 . 8§2 _S3

(2) The evol. eq. for the 3" order stat. moment, << & @, @, >>|
should be written from init. Eq. by the same manner

via the fourth moment,

sl _s2 s3 s4
<<a,a a_ a, >>)

which could be split into a set of products of the second
moments expressed via the spectrum S, (chaotic phase hypothesis)

By this way the 2" order term appears in the r.h.s. for the
intermittent evolution Eq. (23) for the spectrum S, (!!):

]wsLs2§3
k.k .k

S(k) =Re { Z 15(K,s1,s52,53)

sl,52,53

: FN2[S(k)]} +res| (28)

Where FN, is the second power functional in S, . i
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GRS Solution (continued)

(3) A part of the 4" moments could be specified further
by the same manner.

Finally, we get the most general Kind of DIS(S) of the form

DIS(S,k, W) = 3¢, (k, W)EN, [S(K)]| (29)

Thus, general form of DIS is a series of functional of S,
starting from the second power term.
Due to assumption of wave-phase structure destruction
(in the forcing term), In further consideration
we can use the simplest local form: FN_ (S,) ~ (S,)" .

Farther specification of DIS(S) has a phenomenological feature.



Parameterization of DIS

For the presence of a small parameter defined as
a =max[S(c,0)0’ | g’ 1~ a,, =0.01<<1 (30)

Due to this, without a loss of accuracy, in the lowest order of a
the phen. series (8a) for DIS(S) can be restricted by the first term

6

DIS(..) = ¢,(..)S*(k) = (0,0,W) = S*(,6) 31)
g
The dimensionless factor y(...) follows from the balance
[[ - D[S] S=S,, 0 ’ (32)
valid at the equilibrium tail part of spectrum
o >250, (33)

with the fixed shape S, (o, 0) .
(In (32), it is taken into account a relatively small contr. of NL(S) in domain (33)). 23
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Q) Parameterization of DIS (features)

Final theoretical result has the form (Polnikov, 2005, 2010)

6
Dis(5,0,5,W) = C,.c(5,0,0,)max[B,., B(c,0,W)| 2= 5*(5,0).  (34)
g

A. The special phenomenological function c(...) of the kind
c(0,0,0,) = 32maX[O’ (G_apap)/G]T(Ga 0,0,) (35)

describes losses in the domain of peak of spectrum (empir. effects E2,E3)
c(...) regulates different features of Dis-term in two
parts of spectral domain (peak domain and tail part).

B. The angular function 7(.) has a two-lobe feature (empir.effect E4)

c ., 0-0
T(G,H,Hw,ap)={1+4asm( 5 )}max[l, 1-cos(60-6,)] (36)

P

C. Constants C;, f,;;, and a, are the main fitting par-s in Dis-term.
All of them has a certain physical meaning!
At present,
parameterization (34)-(36) is the best justified among Others"'
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S oma Turb. Viscosity estimations
Comparing
Dis = vy (0, ' W, S)*k**S
with

Dis(c,0,5S,W)=C, c(o,0,0 )max[ﬂdls,,b’(a 0 W)] S2(0 0)
g’

one gets

vy = Cpe(a ) BV ,c,,(0)]-0°S . @D

With account of the widely accepted presentation

BV ¢, ()] =30-(p,/ p)2-10°W* /¢, (0)] (38)

that leads to estimation

2 5
v ~max{10°,4-10 W; }.(G ZSJ

v 24107 m’s™ (39)

o=l

Estimation (39) is 2 orders greater that kinematics viscosity of water!!!



Procedure of validation

Regulations of comparative verification procedure demand a
fulfillment of the following series of conditions:

« Reasonable data base of reliable observations for wind waves;

* Reliable wind field given on a rather thick space-time grid for
the whole period of observations;

* Well designed math part for numerical model of the kind (1);

e Choice of a widely recognized wind wave model as an etalon for
comparison.

These conditions were met by using buoy data of NBDC, wind field
of NCEP and two models WAM and WW, published in
(Polnikov et al, 2008) and (Polnikov&Innocentini, 2008).

Results for WW are presented below.

26
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‘@ Simulating region in the North Atlantic

and some buoys locations
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Verification results

The best results are gained for the following values of fitting coeffs:
= 9 10; C,=04, C,=70, and a= 0.7 (40)
with the default values of the other fitting parameters (Pol., 2008).

A typical time history of significant wave height, [ (¢) , obtained in
these simulations is shown in Fig. 1.

Hs(t), m —— 1-Hs-b41001
? —a 2-Hs-WW
0 1% —— 3-Hs-NEW
7 . 7
: !
5 - i "& P
3 * . i* ) .
il 1A 22 B i i 1
’ z‘ Fm#‘ f . F ' 2 , &“:
2 "5"'\ 1 : 3 \‘K“ /: x Y ‘\\ N ““‘v w
A ¥ SAV, S . |
. No of data
0 100 200 300 400 500 600 700 800

28
Fig. 1. Time history of the observed and simulated wave heights on buoy 41001 for January 2006.



Results (continue)

Tab. 1. R.m.s. errors for buoys in the Eastern P. of NA

Eastern NA, Model WW Model NEW ()
Noofbuoy | SH..m | pH % | H..m | pH. % (&) v

62029 0.57 14 0.54 13 1.05
62081 0.67 15 0.56 13 1.20
62090 0.66 14 0.57 14 1.16
62092 0.58 14 0.53 14 1.09
62105 0.79 18 0.68 15 1.16
62108 0.99 15 0.84 13 1.18
64045 0.71 12 0.61 12 1.16
64046 0.72 15 0.76 15 0.95

29



Results (continue)

Tab. 2. R.m.s. errors for buoys in the Western P. of NA

Western NA | Model WW Model NEW (OH )y
oH m | pH % | oH ,m | pH_ ,% (OH ) e
41001 0.81 22 0.66 20 1.23
41002 0.52 18 0.47 18 1.11
44004 0.82 25 0.68 26 1.21
44008 0.83 27 0.61 24 1.36
44011 0.82 23 0.55 18 1.49
44137 0.58 19 0.51 17 1.14
44138 0.70 19 0.74 19 0.95
44139 0.63 19 0.69 20 0.91
44140 0.78 19 0.80 19 0.97
44141 0.64 20 0.68 20 0.94
44142 0.81 27 0.48 18 1.69 0




Location buoys in 10,
used for verification of model WAM

20 N

10

60 70 80 90 100 110
31
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HS-NEW(C7=0.65)
HS-WAM-orig
8 ——HS-buoy-DS1

.
2 ‘\Uﬁm %Mﬁm

- * MW

Time-point, c.u.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

The time history for Hs&t/{ on buoy DSI:
black — buoy measurements; red- WAM original, green —“-WAM mod.
32
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After several attempts, we have found the table of r.m.s. errors :

The buoy index r.m.s. err., m r.m.s.err., m
| coordinates] WAM-orig WAM- modif

DS1 [15.5N, 69.3E] 0.75 0.47
DS2 [10.7N, 72.5E] 0.40 0.29
SW3 [15.4N, 73.7E] 0.45 0.28
Mean r.m.s. error 0.533 0.347

All other simulations of wave-fields were executed for the optimal fit

of NEW model (i.e. the modified WAM).

(The detailed discussion of the point is not the subject of the work, it 1s
under submission to publication). 33
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Analysis of these results shows the following.

1. The accuracy of the model NEW is regularly better with
respect to one of the original WW,

This result is revealed
for more than 70% of buoys considered.

2. Winning of accuracy for the model NEW is of
the order of 15-20%. but sometime it can reach 70% (buoy
44142).

3. The relative error, PH, , calculated by taking into account

each point of observations, is not so small (15-27%). It has a
tendency of reducing for the model NEW, but it is not so well
expressed.

34
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1. The nonlinear feature of function DIS(K, .S) (31) is robust to any
assumptions of equilibrium spectrum shape and the specification
of nonlinear R.S. closure,

just due to nonlinearity of the dissipative forcing term (R.S.).

2. Domain of validity of the result is hundreds of peak periods and
wave lengths.

For this reason, the threshold feature of breaking is smoothed
due to wave statistics,

and empirical effect E1 is not manifested in DIS(S).

3. The most radical assumption of destruction for wave-like phase
feature in the R.S. forcing, provided by the averaging over
turbulent scale could be elaborated in further (if needed).

This could change the local feature of DIS(K,.S) in the k-space
to the one of convolution form, [S(k-k)S(K))dk’

(corresponding to cumulative effect of DIS(S), phenomenological proposed but not
be proved in Young&Babanin, 2006). e
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Finishing remarks

The presentation and full text paper
are available from session laptop, 12thworkshop web-site,
and author.

If you have questions,
please be aloud , slow, and short.

Otherwise, please contact directly to the author.

Thank you for understanding
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