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Scope and results
• Progress in the development of efficient methods for the 

computation of non-linear four-wave interactions in discrete 
spectral wind-wave models

• Improved efficiency of WRT method, including LQA
• Resemblance of stripped-down WRT method and mDIA
• Inclusion of improved shallow water physics in coupling 

coefficient slows down down-shifting of spectral peak 
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Contents

• Non-linear four-wave interactions in wind-wave models

• Computational methods

• Discrete Interaction Approximations

• Reducing the work load in the WRT method

• Equivalence of WRT and DIA’s

• Effect of modified shallow water physics
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Non-linear four-wave interactions 
in wind-wave models

• Non-linear four-wave interactions essential for wind-wave evolution
• Source term fully known, but too time-consuming for practical use
• Operational models like WW III, SWAN, WAM use crude but fast DIA
• Error’s in DIA’s are compensated by tuning other source terms
• Need for more accurate and ‘fast’ parameterisations of non-linear 

four-wave interactions 
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Computational methods
• Discrete Interaction Approximation (Hasselmann et al., 1985)

• Exact reformulations of Boltzmann integral (Webb, 1978; 
Masuda, 1980; Polnikov, 1997; Lavrenov, 2001;…)

• Practical exact solution methods (Tracy and Resio, 1982; Van 
Vledder, 2005; Komatsu and Masuda, 2001; Gagnaire-Renou 
et al., 2010; …) 

• Two Scale Approximation (Resio and Perrie, 2009, 2010)

• Dominant transfer (Perrie et al., 2010)



6Environmental Fluid Mechanics 

Challenge: bridging the gap

• Exact methods (accurate and time consuming)

• Discrete Interaction Approximation (fast and inaccurate)

• Speeding up exact solution method (filtering; courser 
interpolation; higher-order quadrature methods; smarter 
choice of integration space, …). Reduced Integration Methods

• Extending the DIA with more wave number configurations

• Will both methods meet somewhere ?
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Accurate                                  Incorrect

Time  consuming                          Fast

Exact methods Discrete Interactions

Full          Filtered       Extended     Classic  

Xnl                       xDIA                 mDIA DIA
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Classic DIA and it extension
• DIA with one type of configuration

• Generalized DIA with arbitrary configuration (Van Vledder, 
2001; symmetric form proposed by Tolman 2004).
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Discrete Interaction Approximations

• Classic DIA, =0.25, Hasselmann et al., 1985
• Multiple DIA, i , i=1,2 (Van Vledder et al., 2000)
• Hashimoto and Kawaguchi (2001), Tolman (2004)

• DIA limited to one type wave number configuration
• Adding of this type of configuration no solution

• Generalized Multiple DIA with i , i , i (Van 
Vledder, 2001, Tolman, 2004, SRIAM, Komatsu and 
Masuda, 2001)
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Coefficients of mDIA

• Each wave number configuration has 3 shape factors 
(, , ) and a coefficient of proportionality Cnl4

• How to choose these coefficients?

• Least square analysis against limited set of (often academic) 
spectra

• Holistic approach, growth curve analysis (Hasselmann et al., 
1985; Tolman, 2010)

• What is the next best wave number configuration?
• What is the best combination of 2, 3, 4, …, configurations? 

• Start from the other end: mathematically consistent stripping 
down of WRT method to end up with discrete interaction 
configurations
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Strip down exact method to mimic 
a Discrete Interaction

• Workhorse is the WRT method of Resio and Perrie (1992), 
Van Vledder (2006)
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The T-function in the WRT method
k1 and k3 loop over 
all discrete wave numbers of a 
spectrum

For each k1 ,k3 combination the 
resonant k2 and k4 wave numbers 
form closed path (locus) 

T(k1 ,k3 ) integrates product of 
functions (coupling coefficient, 
Jacobian term, wave number 
product) along locus
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Range of k3

 

in discrete wave number grid

Speed up by choosing only k1 - 
k3 combinations that are not 
too far separated in wave 
number space.

Effective method to reduce 
workload, examples in Van 
Vledder (2006)
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Modifying outer k3

 

integration
 loop in WRT method

Disadvantage of present 
implementation of WRT method: 
k1 and k3 fixed to discrete wave 
number grid. 

Distribute k3 around k1 according 
to e.g. Gauss-Legendre 
quadrature including proper 
weights
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Integration along locus, LQA
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Piece wise integration along locus, 
lump contribution of coupling 
coefficient G and Jacobian J, 
which can be precomputed

Pick a few points on locus, but 
keep all information of G and J 
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Incremental integration along locus

Dual points on locus form a 
quadruplet

Identify individual wave 
number configuration on locus

Determine shape factors
, , 
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Equivalence of stripped WRT and 
Discrete Interaction

• In WRT changes are made only to each pair of discrete n(k1 ) 
and n(k3 ), while using information from loci of k2 and k4 . 
Action densities at the latter wave numbers are affected 
further on in the looping process.

• In DIA changes are made simultaneously to all four wave 
numbers in a configuration of k1 , k2 , k3 and k4

• Principle of detailed balance n1 =n2 =-n3 =-n4

• Strength of individual T-contributions determine weight of 
quadruplets. Account for scaling with wave number.
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Testing new approximations

• Example of comparison
• Renormalization needed
• First check on individual 

spectra
• Stability analysis, growth 

curves
• Field cases
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Shallow water effects
• WRT method also suitable for shallow water

• Extension of (mG)DIA to shallow water 
• WAM: Overall scaling factor R(kh), based on narrow peak 

approximation Herterich and Hasselmann (1980)
• Shape remains constant, whereas it will change !
• Shallow water DIA (Van Vledder and Bottema, 2002), depth 

included in dispersion relation and coupling coefficient
• More advanced msDIA developed by Tolman (2010)
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Modulational instabilities in shallow water

• (Peter) Janssen and Onorato (2007) investigated effects of 
modulational instabilities and wave induced currents in shallow 
water on non-linear transfer rate

• For narrow peak approximation they show that Snl4 vanishes for kh 
= 1.363

• They suggest alternative scaling of deep water transfer rate
• Full coupling coefficient and narrow band approximation

• Narrow-band scaling 
implemented in SWAN 
model

• Fetch-limited wave growth
• Storm condition in Dutch 

Wadden Sea
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Fetch-limited wave growth

• U10 = 10 m/s, depth = 5 m, fetch = 10 km
• Slower downshifting of spectral peak
• Spectra shown at 5, 7.5 and 10 km 
• Wave heights and periods 10% smaller 



22Environmental Fluid Mechanics 

Storm of 9 November 2007

Eastern Wadden Sea 
and buoy location

Moment of high water,
Wind speed 20 m/s
Offshore Hm0 = 8 m, Tp =12 s
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Effect on periods and heights (5%) and 
spectra at buoy positions
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Summary and conclusions
• Efficiency of WRT improved (no claims yet about performance)
• Stripped down WRT resembles set of discrete interactions
• Further testing and choice of settings in progress

• Narrow band depth scaling of Janssen and Onorato (2007) slows down 
downshifting of spectral peak

• Consequences in Wadden Sea small and local
• Implementation and testing of full modified coupling coefficients in 

progress
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