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1.  Introduction 
 
 Since the 1970’s, it has been widely accepted that the effects of wave generation, 
propagation, and decay can be represented in terms of the so-called radiative transfer 
equation (RTE), 
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Also since that time, it has been widely accepted that three source terms are required to 
represent the important processes in the first term on the right hand side of equation 1:  
wind input ( inS ), nonlinear wave-wave interactions ( nlS ), and wave breaking/dissipation 
( dsS ).  Before the mid-1970’s, First-Generation models assumed that only wind input and 
wave dissipation/breaking were significant to the generation and dissipation of waves.  
Second-Generation models added the nonlinear source term into equation 1, reflecting a 
transition in our understanding of the physics of wave generation/decay and spectral 
evolution in nature.   
 
 In spite of general acceptance of nlS  as an important element in wave modeling 
(Young and Van Vleddar, 1993;  Komen et al., 1994; Cavaleri et al, 2007), the nonlinear 
wave-wave interaction source term has remained a somewhat mystical factor within wave 
models for many researchers.  Probably because of some remaining skepticism 
concerning this term, different modelers even today continue to use representations that 
vary significantly from each other in operational models, which is truly quite surprising 
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since this is the only source term of the three that can actually be derived from first 
principles with no recourse to empirical coefficients.  However, within the last decade or 
so, several excellent studies using theoretical methods and direct numerical simulations 
have clearly demonstrated that 1) wave-wave interactions are critical to the evolution of 
wave spectra and 2) these interactions are well approximated by the integral developed 
by Hasselmann in 1962 (Tanaka, 2001a, 2001b, 2007; Korotkevich et al., 2007)  
Additional studies have demonstrated that the development of many spectral 
characteristics predicted by these nonlinear interactions (such as the 4f − equilibrium 
range and bimodal directional distribution of energy) are very dominant features of 
observed wave spectra (Young et al., 1995; Ewans, 1998; Wang and Hwang, 2001; Resio 
et al., 2004; Long and Resio, 2007).  The recent independent verification of the nonlinear 
source term and the prevalence of features within observed wave spectra consistent with 
predictions based on nonlinear interaction theories both suggest that it nlS  must be 
accurately quantified within wave models before the other two terms can be properly 
formulated within these models.  In this light, it seems appropriate at this time to take a 
critical look at the approximations currently used in existing operational models.  
 

In the mid-1980’s, Hasselmann et al. (1985) argued that it was important to solve 
equation 1 in terms of a detailed balance formulation in order to capture critical wave 
generation-dissipation processes in complex situations.  This established the foundation 
for third-generation models.  However, it should be noted that third-generation models 
retained essentially the same formulation for source terms as embodied within second-
generation models.  Second-Generation models used detailed balance formulations for 
their propagation and for their wind input and wave breaking source terms; however, 
these models used parametric approximations for the nonlinear wave-wave-interaction 
source term (Barnett, 1968; Ewing, 1971; Resio, 1981).  Hasselmann et al. (1985) 
postulated that the number of degrees of freedom in all of the source terms must be as 
great as the number of degree of freedom used to represent the spectrum within a model; 
otherwise, artificial constraints on the spectral evolution would be introduced which 
could significantly affect modeled wave generation and decay rates.  
 
 After investigating a number of approaches for approximating nlS , the 
approximation adopted by Hasselmann et al. (1985) was based on a discretized form for a 
special case of nonlinear interactions due to Phillips’ (1958).  Resio and Perrie (2008) 
note that at least five different approaches have been used in attempts to formulation an 
efficient and accurate approximation to nlS :  a) parametric representations;  b) local 
interaction/diffusion operators (LIO’s); c) linear combinations of orthogonal functions; d) 
reduced integral domains; and e) the Discrete Interaction Approximation (DIA).  The last 
of these methods noted here is the approach developed by Hasselmann et al. (1985).  In 
addition to these methods, additional methods using statistical methods such as Artificial 
Neural Networks (ANN’s) have been examined (Tolman et al., 2004).  Additionally, 
various other methods which are essentially extensions of the DIA approach have now 
been developed and are under consideration for implementation within models, such as 
the MDIA (ref), the EDIA ( ref )the SRIAM (ref), and the TSA (Resio and Perrie, 2008; 
Perrie and Resio, 2009). 
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 The methods mentioned in the previous paragraph can be subdivided into two 
broad sub-categories; 1) methods which are constrained to conserve energy, action, and 
momentum and 2) methods which are not constrained to conserve energy, action, and 
momentum.  Given the importance of conservation to the physics of the processes being 
modeling (which is likely to be exacerbated in shallow water), we decided to omit non-
constrained methods and methods inappropriate for detailed-balance calculations 
(methods which do not retain at least as many degrees of freedom in the approximation 
to nlS  as in the directional spectrum being modeled) from further analysis here.  This 
eliminates parametric methods and statistical methods (both orthogonal function 
approximations and ANN approximations).  Also, since LIO’s have not been shown to be 
effective in operational models these will not be addressed in this paper.  This leaves only 
discretized approximations of the type represented by the DIA, MDIA, EDIA, SRIAM, 
and TSA. 
 
 
2.  Theoretical Considerations 
 
 All of the approximations considered here are based on the Full Boltzmann 
Integral (Hasselmann, 1962), an integro-differential equation which relates the rate of 
change of action density in vector wavenumber space [ ( )n k

r
] to an integral over the 

entire spectrum 
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The function C is the coupling coefficient.  The function W is defined as the locus of 
points such that 
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The denominator in the Jacobian, nk is the wavenumber vector normal to the interaction 
locus and H is the Heaviside function. 
 

The form of equation 2 shows that interacting waves constitute a three-
dimensional volume (Figure 1) imbedded within the original six-dimensional 

2 3 4k k k− −
r r r

interaction space, as was also shown in the work of Masuda (1980) who 
solved a transformed version of equation 2.  Similar to any numerical integration method, 
the FBI (either the Webb-Resio-Tracy, WRT, method or Masuda’s method) must 
integrate over a sufficient extent of the three-dimensional interaction space at a sufficient 
resolution to achieve a given degree of accuracy.   

 
For many years researchers have sought a simplification to equation 2 which 

could either reduce the number of dimensions required in the integration or reduce the 
extent of the volume that had to be included within the integral while retain a prescribed 
accuracy, with very little success.  The reason for this lack of success can be found in the 
fact that although both the density term in the integral, 3D , and the geometric phase-
space term in the integral, G , can vary by several orders of magnitude within fairly small 
regions of the interaction space, their variation is essentially independent.  Since the two 
terms are multiplicative, the contributions to the total integral cannot be prescribed by 
consideration of only one of the two terms without consideration of the other.  Thus, in 
some cases, the primary contributions to the rate of change at a particular spectral 
location can come from one region of the interaction space, while for other spectral 
shapes the primary contributions can come from another region of the interaction space. 

 
The original argument in favor of the made by Hasselmann et al. (1985) was that 

contributions to nlS  term would be dominated by interacting triplets in which at least two 
of the components were located in the vicinity of the spectral peak.  Whereas this is 
might be true for interactions in the vicinity of the spectral peak for relatively peaked 
wave spectra, it is not a good approximation for all spectral regions even in peaked 
spectra nor does it provide a good approximation in the spectral peak region for spectra 
which are not very peaked.  Unfortunately, the precise formulation of the DIA is 
considerably more limiting than implied by the above assumption, since it essentially 
adds a delta function into the geometric phase space portion of equation 2 (the Phillips 
figure-8 form for the allowable interactions), 
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Since the vector delta function removes two dimensions from the three dimensional 
integral, the interactions are now limited to a one-dimensional line with zero “interaction 
volume.”  The figure 8 shown in Figure 2 is the case where the value of s has been 
adjusted to the point where the delta function on 1 2k k−

r r
is satisfied.  
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 Figures 3 and 4 show examples of how the Phillips’ figure 8 constraint translates 
into conventional interactions considered in the WRT method for the specific cases of 
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  By now it should be recognized that the inclusion of the delta function on 1 2k k−

r r
 

is an extremely large “leap of faith” to make in an approximation to the full FBI, even if 
the interaction were computed over the entire figure-8 locus.  Such an integral might 
require evaluations of the contributions to the integral at 30-50 points to maintain a high 
accuracy.  Instead, the DIA further reduces the integral by choosing only 4 points (a 
quadruplet) along the figure 8, which further reduces the portion of the interaction space 
considered.   
 

A logical question related to the selection of a single quadruplet along the figure-8 
locus is “do the typical points selected represent locations of significant maxima in the 
coupling rates of interacting waves?”  Figure 5 shows the coupling coefficients associated 
with the complete interacting loci associated with the figure 8 locus shown in Figure 2.  
In Figure 5, s is again defined such that the “0-value” coincides with the point satisfying 
the original quadruplets along the 1 2k k−

r r
delta function (the figure-8 locus).  As can be 

seen here, the coupling coefficients are not particularly large for this location. 
 

Even if all spectra had precisely the same shape, it would still not be possible to 
define a single constant which could be used to correctly scale the DIA at a fixed location 
to its corresponding FBI value for all frequencies and angles in a spectrum.  This can be 
seen by noting that this empirical constant is definable as  
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Formally, the value of DIAZ  can be seen to be zero because the delta function reduces the 
integration volume to zero; however, in the sense that it is used by Hasselmann et al. 
(1985), it retains the phase areas associated with the specific interacting spectral 
components and does not vanish, introduces a dependence on spectral resolution into the 
value of DIAZ  .  Although the coefficient DIAZ defined here is not numerically equivalent to 
the empirical constant used in operational versions of the DIA, the points that are being 
made here should be equally valid for the empirical constant used in those versions of the 
DIA. 
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Given the scaling relationships inherent in the FBI (see for example Resio, 1987), 

if that the sampling locations (quadruplet locations) for the DIA retain the same 
geometric configuration throughout the spectrum, the effect of the 1 2k k−

r r
delta function 

on the geometric component’s (the “G” function in equation 2) contribution to the ratio 
defining DIAZ  would be a constant independent of angle and frequency.  However the 
action density triplets will be very different (the 3D  term in equation 4).  Thus the value 
of the empirical constant required to equate the DIA to the FBI ratio at one frequency and 
angle will, in general, depend on the location within the spectrum.  For example, in a 
small set of numerical tests, the values of DIAZ for different points in the same JOSNWAP 
spectrum were found to vary by up to a factor of 10 and the difference between values at 
the same location within two JONSWAP spectra with different peakednesses was vary by 
a factor of 8.  The fact that a single empirical constant is used in operational versions of 
the DIA produces results which distort the resulting nonlinear source terms obtained via 
the DIA, as shown in Resio and Perrie (2008) and Perrie and Resio (2009).   

 
The basic discrepancy described here is that the value of DIAZ varies as a function 

of location within the spectrum.  Optimizations which fit an overall rms error term over 
the spectrum are basically attempting to find the value of DIAZ which works best over the 
entire spectrum.  This will emphasize the behavior of the approximation in the region 
where nlS is highest, the spectral peak region, and may provide a poor approximation 
elsewhere. 

 
It is unclear how much advantage, if any, is gained by including additional points 

around the figure-8 locus (as in the MDIA) and by relaxing the 1 2k k−
r r

delta-function 
constraint (the EDIA), since this does not remove the basis of the discrepancy created by 
global optimization noted here. In fact, any discrete approximation which uses a globally 
optimized single empirical constant to convert the local discretized approximation to an 
FBI estimate will distort the results.  Furthermore, the use of a small subset of points 
from the complete three-dimensional interaction space to approximate the FBI will 
always lead to results which are substantially affected by the shape of the spectrum.   
Thus, as the spectral shape changes so does the location of the optimal sampling points 
and the (spectral-location dependent) values of the coefficients which can be used to 
equate the discretized estimates to the FBI estimates.   
 
  
 
3. Analysis of DIA performance for parametric and observed spectra 
 
 Since a recent publication by two of the co-authors here have presented 
comparisons of the DIA to the FBI, we will use results from those papers (Resio and 
Perrie, 2008; and Perrie and Resio, 2009) rather than a set of new comparisons to 
examine the performance of the DIA in light of the theoretical discussion presented 
above. 
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 Figure 6 from Resio and Perrie (2008) shows a comparison of the DIA to the FBI 
for some simple parametric spectra, JONSWAP spectra with a spectral peak frequency, 

pf , of 0.1 hz, a value of the equilibrium constant, α , equal to 0.01, a value of the 
peakedness spreading parameters, and a bσ σ , equal to 0.07 and 0.09 respectively, and  
the peakedness parameter, γ , taking on three values (1.0, characteristic of a fully 
developed sea; 3.3 characteristic of a fetch limited wave spectrum; and 7.0 characteristic 
of a very narrow swell spectrum).  As can be seen here, the DIA produces a prediction 
that varies systematically with respect to the FBI.  It overpredicts values of nlS  (by 
almost a factor of 3) near the spectral peak for the low peakedness case.  It was tuned to 
approximate the near-peak values of nlS for the fetch-growth case, but still produces very 
poor results in other region of the spectrum as expected from the above discussion.  And, 
it underpredicts the values of nlS (by a factor of over 2) near the spectral peak region for 
the high peakedness case.  There is really no surprise in these results, as the peakedness 
increases, the dominance of the near-peak interactions increases; thus, the standard 
empirical coefficient used to relate the DIA to the FBI was tuned to match the medium 
peakedness case.  For lower peakedness cases, it will overestimate the portion of the 
contribution to the total integral that comes from this region.  For higher peakedness 
cases, it will underestimate the near-peak contribution to the total integral.  This is a 
problem that could perhaps be overcome by tuning the DIA coefficient to vary as a 
function of peakedness.  Similarly, the consistently poor performance of the DIA in 
regions other than the spectral peak would require tuning for each angle and frequency 
separately.  Of course, such a tuning would be specific to a JONSWAP spectrum with a 
fixed angular distribution. 
 
 Figures 7 and 8 from Perrie and Resio (2009) show the performance of the DIA 
for the case of observed spectra at a site about 5 km offshore from the Field Research 
Facility in Duck, North Carolina.  As can be seen here, the DIA’s estimates are incredibly 
erratic.  This is due to its reliance on a very small number of discretized interactions as 
the basis for its approximation to nlS  out of all of the interactions which actually 
contribute to nlS .  
 
 
4.  Desired attributed for an approximation to nlS  
 
 As one might recognize from the analyses presented here, approximations to the 
FBI are very difficult to formulate to be both efficient and accurate.  This raises a bit of a 
quandary, since convincing evidence from many independent studies have demonstrated 
the important role that these interactions play in the evolution of wave spectra. A relevant 
question that has never really been addressed within the wave modeling community is 
whether or not it better to use an inaccurate representation for nlS that retains the same 
number of degrees of freedom as contained within the directional spectrum or is it better 
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to have a representation for nlS that is accurate but lacks the same number of degrees of 
freedom as contained in the directional spectrum? 
 
 
 To begin to answer this question, it is important to adopt some clear metrics for 
the representation of nlS within wave models.  The original argument for including all of 
the degrees of freedom with the representation for nlS was to allow this term to function 
in complex situations. For a relatively simple situation, such as fetch-limited wave 
growth under a constant wind field, a simple parametric representation should be able to 
represent nlS quite reasonably.  For more complex scenarios, such as multiple wave trains 
approaching a coast, waves within hurricanes, or waves in other complex fetch/wind-field 
situations, it is extremely unlikely that a simple parametric-based representation of 

nlS will provide reasonable accuracy.  An example of this can be found in Figure 9 from 
Perrie and Resio (2009) where it is shown that even in a situation where the directionally 
integrated spectrum is very closely approximated by the spectrum used to derived the 
parameterized results for nlS , the effects of different angular distributions can still 
produce large deviations between parametric estimates of nlS  and  the FBI results.  
 
 Some metrics for an approximation to nlS  which might help us determine the best 
way ahead for wave modeling are listed below. 
 

1.  It should conserve the constants of motion (action, energy, and momentum); 
otherwise, the need for spurious additional source terms will undoubtedly arise. 
2.  It should produce the correct fluxes of action, energy and momentum through 
the spectrum in order to allow the spectral shapes to evolve in a proper fashion.  
The DIA does not produce a constant action flux for an 4 5/ 2(or )f k− −  spectrum. 
This will produce a different partitioning of all the fluxes within a spectrum 
making it difficult to simulate the wave generation/dissipation process correctly. 
3.  It should force a response to a perturbation in the spectral densities that is 
quantitatively close to the FBI solution. 
4.  It should produce estimates of  nlS  with deviations from the FBI that 
consistently deviate less than some small percentage, perhaps 15%, or so. 
5.  It should be accurately adaptable to coastal water depths.  The scaling used in 
current Third-Generation models use a scaling that is too crude to capture 
important features of spectral evolution in waves propagating toward a coast. 
6.  The approximation in combination with reasonably posed additional source 
terms should be capable of producing rates of change of dimensionless energy and 
peak frequency across a fetch up to a condition of full development that agree 
with previous field studies. 
7.  The approximations in combination with reasonably posed additional source 
terms should be capable of producing directionally integrated spectra and 
directional distributions of energy which are consistent with previous field 
studies. 
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5.  Discussion and Conclusions  
 
 The purpose of this paper is to provoke some recognition and discussion of 
categorical problems with the DIA’s approach to estimating nlS in wave models.  It seems 
likely that most of the criticisms raised here will apply to some extent to all of the 
attempts to extend the DIA via the incorporation of additional quadruplets, either on the 
Phillips’ figure-8 locus (MDIA) or off of this locus (EDIA).  Although it has been widely 
accepted that nonlinear interactions play a dominant role in the wave generation process 
in all depths of water and in the wave transformation process in waves approach a coast, 
the present approximations appear to be too inaccurate to provide a realistic 
representation of nlS in offshore and coastal areas.   
 
 Some conclusions based on the analyses here are as follows: 
 

1.  A small number of points selected from the entire set of potential interaction 
combinations does not seem able to provide a consistent, accurate estimate of nlS , 
even for simple, parametric spectral shapes. 
2.  A single coefficient cannot be used to relate the values of nlS to the FBI 
estimate at different locations in the spectrum, as is currently done in operations 
version of the DIA. 
3.  The impact of using discrete interactions is to introduce erratic errors into 
estimates of nlS when the spectra contain perturbations from a smooth form.   

  
 Based of these conclusions, it seems necessary to improve the estimates of nlS in a 
fashion consistent with the metrics suggested in this paper before a lot more effort is 
expended on adding additional nuances into existing source terms in attempts to coerce 
them into producing more accurate wave predictions in operational models. 
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Figure 1.  Graphical representation of the interaction volume considered within the Full 
Boltzmann Integral (FBI), with two dimensions introduced by the variation in 

3 1 around k k
r r

 and one dimension introduced by the distance along the “s locus.” All of the 
volume inside the cylinder would be considered in a WRT integration. 

 
Figure 2.  Location of the Phillips’ figure-8 curve within the general 3-dimensional 
volume for wave-wave interactions.  The “x’s” in this figure are indicative of the location 
of a fixed quadruplet. Thus, in the DIA only 4 “points” are retained from the actual 3-
dimensional interaction volume. 
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Figure 3.  An example of the relationship between the Phillips figure-8 interaction locus 
and interactions considered within the WRT integration method. 

 
Figure 4.  An example of the relationship between the Phillips figure-8 interaction locus 
and interactions considered within the WRT integration method. 
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Figure 5.  Variation in the coupling coefficient around the Phillips figure-8 locus.  The 
definition of s=0 is such that it is coincident with the locations of the quadruplets in the 
original version of the DIA. 

 

 
Figure 6.  Comparison of DIA to FBI for JONSWAP spectra with 3 different peakedness 
values from Resio and Perrie (2008). 
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Figure 7.  Comparison of an estimate of nlS  from the DIA compared to the FBI solution 
for a Currituck Sound case ( Perrie and Resio, 2009). 
 
 

 
 
Figure 8.  Comparison of an estimate of nlS  from the DIA compared to the FBI solution 
for a spectrum taken from the offshore waverider at the Field Research Facility in Duck, 
North Carolina ( Perrie and Resio, 2009). 
 


