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1 INTRODUCTION

For many years, the search has been on for practical
nonlinear wave-wave interaction algorithms for oper-
ational wind wave models, where computational cost
is a critical consideration. The particular challenge
has been to replace the Discrete Interaction Approx-
imation (DIA, Hasselmann et al., 1985, henceforth
denoted as HHAB) with a more accurate approach
without significantly increasing the computational
costs of operational wind wave models. Since the
publication of the DIA, computing capabilities have
also increased dramatically, making more expen-
sive parameterizations economically feasible. Even
then, increased computational cost can only be jus-
tified when model behavior improves compared to
model results obtained with the DIA. The present
manuscript concentrates on effort from the National
Centers for Environmental Prediction (NCEP). It
represents a continuation of the work presented in
Tolman and Krasnopolsky (2004), and is not in-
tended to give a complete review of other work done
in this field. NCEP has followed two different ap-
proaches to achieve more accurate yet economical
approximations for the nonlinear interactions.

The first is the development of a Generalized Mul-
tiple DIA (GMD, Tolman, 2003, 2004, 2005, 2008)
approach. The presentation will address how such
a GMD can be formulated to properly scale over
arbitrary depths up to relative depths kd < 0.1. In
order to optimize such a GMD, a holistic approach is
needed, where the entire wave model behavior is op-
timized. Previous holistic optimization methods for
deep water have been expanded to include arbitrary
water depths.

The second is the development of Neural Network
Interaction Approximations (NNIA, Krasnopolsky
et al., 2002; Tolman et al., 2005; Krasnopolsky et al.,
2008). Previously, a hybrid NNIA has been presented
with the capability to result in stable model integra-
tions. This NNIA is presently expanded with a DIA-
based filter technique to become faster and more sta-
ble. Effects of this filter and a more in-depth analysis
of strengths and weaknesses of an NNIA will be dis-
cussed here.

The present report documents progress in both re-
search efforts. Section 2 provides background infor-
mation on wave models and interaction approaches.
Sections 3 and 4 describe the Generalized Multiple
DIA and its optimization. Section 5 describes recent
progress in the Neural Network approaches, and Sec-
tion 6 presents an outlook.

2 BACKGROUND

Wind wave model are generally based on a balance
equation for spectral energy or action density (e.g.,
Hasselmann, 1960)

DF

Dt
= Sin + Snl + Sds , (1)

where F is an action or energy density spectrum of
the wave field, retaining amplitude information only
(assuming a random phase), and where Sin, Snl and
Sds are source terms describing the three basic pro-
cesses of wave growth due to wind, nonlinear wave-
wave interaction, and wave energy dissipation due
to wave breaking, respectively.
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The spectral space of the action or energy spectrum
in principle can be described with the wavenumber
vector k with direction θ and norm k, and with the
intrinsic (radian) frequency σ. Using an intrinsically
linear description of the spectrum, a linear disper-
sion relation exists

σ2 = gk tanh kd , (2)

resulting in a two-dimensional spectral space. The
spectral space can be described as, for instance, (k),
(k, θ) or (σ, θ). The former description is often used
in theoretical work, the latter two in numerical mod-
els.

With the JONSWAP and SWAMP studies (Hassel-
mann et al., 1973; SWAMP group, 1985), the im-
portant role of the nonlinear interactions Snl in the
wave growth process became apparent, as well as
the need to accurately and explicitly describe this
process in wind wave models. The interactions shift
wave energy to lower frequencies (longer waves), and
stabilize the high-frequency shape of the spectrum.
Wave models with explicit parameterizations of Snl

do not require assumption on the spectral shape
(with the possible exception of a parametric tail at
very high frequencies), and are generally identified
as third-generation (3G) models. Previous (1G and
2G) models imply spectral shapes to model effects
of nonlinear interactions.

The nonlinear interactions describe the conservative
resonant exchange of action, energy and momen-
tum between four spectral components (quadruplet)
which satisfy the resonance conditions (Hasselmann,
1962, 1963) :

k1 + k2 = k3 + k4 , (3)

σ1 + σ2 = σ3 + σ4 . (4)

The interactions are conventionally expressed in
terms of the rate of change of the action spectrum
n(k) as

∂n1

∂t
=

∫ ∫ ∫

G δk δσ P dk2 dk3 dk4 , (5)

where ni is the action density at component i, ni =
n(ki), G = G(k1, k2, k3, k4) is a complex coupling
coefficient (Webb, 1978; Herterich and Hasselmann,
1980), δk and δσ are delta functions corresponding
to the resonance conditions (3) and (4), and P is the
product term

P = n1n2 (n3 + n4) − n3n4 (n1 + n2) . (6)

A detailed balance exists between the changes of ac-
tion energy and momentum at the four components
of the quadruplet (Hasselmann, 1966; Komen et al.,
1994, Section II.3.8). When considering discrete ac-
tions changes δni, this becomes particularly useful
for numerical calculations as

−δn1 = −δn2 = δn3 = δn4 (7)

introduces symmetry, enforces numerical conserva-
tion and reduces computations by a factor of four.

Equation (5) represents a six-dimensional Boltz-
mann integral. Application of the resonance condi-
tions reduces this to a three-dimensional integral.
Even in this form, the solution of the integral re-
quires several orders of magnitude more computa-
tional effort than all other elements of a wave model
combined. This implies that a 3G model based on
Eq. (5) will be several orders of magnitude more ex-
pensive to run than a 1G or 2G model. Even if such
a model would become economically feasible due to
increasing computing capabilities, it would be hard
to justify using such a model unless the correspond-
ing 3G models is far superior to 1G and 2G models.
Whereas 3G models appear to be more capable of re-
producing combined wave fields (e.g., Hanson et al.,
2009), they have yet to be shown to be far superior.

The introduction of the Discrete Interaction Ap-
proximation (HHAB) made the development of the
first practical 3G models feasible (WAMDIG, 1988;
Komen et al., 1994). Compared to the exact inter-
actions, the DIA introduced the following simplifi-
cations:

1) A discrete version of the detailed balance form
of the equations [cf. Eq.(7)] is used.

2) Integration of the multidimensional wavenumber
space is replaced by computing discrete interac-
tions for a representative quadruplet only. The
representative quadruplet is define as

k1 = k2

σ3 = (1 + λ)σ
σ4 = (1 − λ)σ







, (8)

where λ is a constant, typically set to λ = 0.25.
Contributions for the representative quadruplet
are computed for k1 corresponding to each dis-
crete point in spectral space.

3) Deep water is considered only. Effects of shal-
low water are partially accounted for by scaling
the deep water interaction based on Hasselmann
and Hasselmann (1981).
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4) The complex coupling coefficient G in Eq. (5) is
replaced by a scaling function with a proportion-
ality constant. With the deep water assumption,
the scaling function as a function of f and g fol-
lows from simple dimensional considerations.

5) A logarithmic discrete frequency distribution is
used in spectral space with

σi+1 = Xσi , (9)

This assumption allows for the removal (cancel-
lation) of discrete bin sizes in the discrete DIA
formulation, and hence is an integral part of
the resulting DIA. Furthermore, together with
the deep water assumption, it allows for discrete
quadruplet layouts to be identical throughout
the spectral grid, and hence fosters computa-
tional efficiency.

6) The DIA is derived explicitly for the energy or
variance density F (f, θ) as a function of the
frequency f and direction θ, with F (f, θ)/σ =
n(f, θ)

Depending upon the other details of the wave model,
the DIA typically is responsible for 40-75% of the
computational effort required by the wave model.
Various modifications to the original DIA have been
suggested, including multiple representative quadru-
plets, alternative definitions of the representative
quadruplet, and other spectral descriptions. For an
overview of these, reference is made to Tolman
(2008). The basic concepts and equations for the
GMD are presented in Section 3, and the optimiza-
tion of the GMD using a holistic approach is dis-
cussed in Section 4.

Another approach used to parameterize the non-
linear interactions is the use of Neural Networks.
A precursor to this is the approach described in
HHAB where an attempt is made to construct the
interactions from Empirical Orthogonal Functions
(EOFs). Tolman et al. (2005) used this decompo-
sition approach combined with a Neural Network
(NN) to successfully reproduce exact nonlinear inter-
actions for test spectra (NN Interaction Approxima-
tion, NNIA). However, this approach does not result
in stable model integration, since model spectra tend
to diverge from training data sets used to develop
the NNIA. Tolman and Krasnopolsky (2004) intro-
duced a hybrid approach where an internal quality
control in the NNIA identifies when the model in-
tegration diverges from the training data set, and
then reverts to a full description of the interactions.

This resulted in the first successful model integration
with a NNIA. Recently, a nonlinear high-frequency
smoothing algorithm was added to this compound
NNIA, resulting in significantly better model results
as illustrated in Section 5.

3 A GENERALIZED MULTIPLE DIA

A generalized multiple DIA (GMD) can be derived
following the basic derivation of HHAB, but without
implying deep water and without limiting the layout
of the representative quadruplet. Such a generalized
DIA was first addressed by Van Vledder (2002a),
and was expanded upon by Tolman (2008). For de-
tails of the derivation of a Generalized Multiple DIA
(GMD) reference is made to the latter report. Here,
only major concepts and findings will be discussed.
The two main goals are to generate more accurate
parameterizations, and to obtain a DIA with appro-
priate behavior for arbitrary depths. Note that for
deep water, a more generalized multiple DIA has al-
ready been shown to be significantly more accurate
in representing interactions for selected spectra (Tol-
man, 2004; Tolman and Krasnopolsky, 2004).

The basis for any DIA is the discrete detailed bal-
ance version of Eq. (5), which can be written as









δn1

δn2

δn3

δn4









=









−1
−1

1
1









B P ∆k∆t , (10)

where P is the product term of Eq. (6), B =
B(f, k, g) is a scaling function including a propor-
tionality constant, ∆t is a time increment, and ∆k is
a representative discrete phase space element. There
are two main contributions to B. The first B1 rep-
resent effects of going from a multi-dimensional in-
tegral to a single discrete representation, the second
B2 describes the scaling behavior of the coupling co-
efficient G.

Equation (10) represents discrete action changes
δni = δn(ki). They can be converted to source term
contributions δSnl,i = δSnl(ki) by dividing the dis-
crete contribution by the time step and the discrete
spectral bin size

δSnl,i =
δni

∆ki∆t
, (11)

which, combined with Eq. (10) and after introducing
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an explicit proportionality coefficient C, gives








δSnl,1

δSnl,2

δSnl,3

δSnl,4









=









−∆k/∆k1

−∆k/∆k2

∆k/∆k3

∆k/∆k4









C B1B2 P . (12)

Note that HHAB assume that ∆k and ∆ki are
equivalent, thus allowing the discrete phase space
elements to be canceled from the final equations.
Note that ∆ki can vary in phase space, for instance
according to Eq. (9), but that the latter equation
then influences the final DIA and GMD expressions.
Note, furthermore, that conversion to other spec-
tral and phase space descriptions requires Jacobian
transformations that generally results in modifica-
tions of P and scaling terms than can be combined
with B = B1B2.

The following represent the major findings as dis-
cussed in detail in Tolman (2008), and in previous
work as indicated.

1) The original quadruplet definition of HHAB is
too restrictive to result in accurate interactions
for selected spectra (Tolman, 2004). A symmet-
ric quadruplet definition with maximum flexibil-
ity can be given as

σ1 = (1 + µ)σ
σ2 = (1 − µ)σ
σ3 = (1 + λ)σ
σ4 = (1 − λ)σ
θ2 = θ1 ± ∆θ























. (13)

For ∆θ = µ = 0 this reverts to the original def-
inition from the DIA, with 2kd = k1 + k2, and
kd are discrete spectral phase space elements ∆θ
is implicitly defined and λ and µ describe the
quadruplet, otherwise all three parameters de-
scribe the quadruplet.

2) The expanded quadruplet definition does not re-
sult in stable model integration, unless used in
a multiple DIA (Tolman, 2003, 2004)

3) Quadruplets with λ, µ and ∆θ that result in
valid quadruplets in deep water will result in
valid quadruplets for arbitrary water depths if
0 ≤ µ ≤ λ ≤ 1

4) If the quadruplet satisfies the resonance condi-
tions for the actual depth, and if contributions
to Snl are distributed to the discrete phase space
analogous to bi-linear interpolation, energy, ac-
tion and momentum are conserved. For contin-
uous phase spaces, this was already observed by

Webb (1978). In the quasi-deep water approach
of the DIA, this implies that momentum is not
conserved. Hence, to obtain a GMD with proper
conservation properties, the quadruplet needs to
be evaluated for each local relative depth at each
discrete phase space element.

5) When converting to alternative spectral (phase
space) description, the proper Jacobians in P are
essential to obtain reasonable behavior of the pa-
rameterization at arbitrary depth.

6) For deep water, a unique scaling behavior for G
can be found from its basic equations, identical
to the scaling expression in terms of f and g
as found on dimensional grounds. For restricted
water depths this is not the case. Systematically
different ‘weak’ and strong’ interactions occur in
deep and extremely shallow water. This can be
modeled adequately in a GMD by defining the
scaling function as the sum of asymptotic deep
and shallow water expressions.

7) Similar arguments generally hold true for the
residual scaling function B1.

8) Changing spectral descriptions in principle has
no impact on the computation of nonlinear con-
tributions in a continuous phase space. How-
ever, when applied in a discrete phase space, the
choice of spectral description influences whether
properties of the quadruplet are evaluated at the
phase space location of quadruplet elements or
at discreet phase space locations. This proved to
have a surprisingly large impact on the resulting
interactions.

In Tolman (2008) a GMD is developed for the use
in WAVEWATCH III TM. This model internally de-
scribes the wave field with the action density spec-
trum in terms of wavenumber and direction N(k, θ),
with the spectral phase space defined with a log-
arithmic frequency distribution (9) invariant with
depth (see Tolman and Booij, 1998). For this spec-
tral description, the GMD contributions for a single
representative quadruplet can be expressed as









δSnl,1

δSnl,2

δSnl,3

δSnl,4









=









−1
−1

1
1









P

(

CdBd

Md

+
CsBs

Ms

)

,

(14)
where Cd and Cs are the asymptotic deep and shal-
low proportionality constants. and where Md and
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Fig. 1: Nonlinear interactions for a WAVEWATCH III TM test spectrum at 60m water depth from
(a) DIA on which simulation was based, (b) exact interactions, and (c) GMD based on F (f, θ)
[Eqs. (14), (18) - (20)]. Logarithmic scaling, red positive, blue negative, identical scaling for all
panels.

Fig. 2: Like Fig. 1 with water depth after model integration artificially reduced to 1m to simulate
extremely shallow water. Lowest contour level increased by factor 1000 compared to Fig. 1.

Ms are the corresponding number of active represen-
tative quadruplets. The latter scaling assures that a
GMD with a set of identical representative quadru-
plets will be identical to a GMD with a single copy
of that representative quadruplet. The product term
P in Eq. (14)is given as

P =
N1

k1

N2

k2

(

N3

k3

+
N4

k4

)

−
N3

k3

N4

k4

(

N1

k1

+
N2

k2

)

, (15)

and asymptotic deep (Bd) and shallow water (Bs)
scaling terms are given as (see Tolman, 2008)

Bd =
k4+m σ12−2m

(2π)9 g4−m cg

, (16)

Bs =
g2 k10

(2π)9 cg

(kd)n , (17)

where m and n are tunable parameters in the scaling
functions.

Alternatively, the GMD can be expressed in terms
of the energy spectrum F (f, θ) consistent with the
traditional DIA. For this spectral description, the
corresponding source term is given by Eq. (14) and

P =
cg,1F1

k1σ1

cg,2F2

k2σ2

(

cg,3F3

k3σ3

+
cg,4F4

k4σ4

)

−
cg,3F3

k3σ3

cg,4F4

k4σ4

(

cg,1F1

k1σ1

+
cg,2F2

k2σ2

)

, (18)
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Bd =
k4+mσ13−2m

(2π)11 g4−m c2
g

, (19)

Bs =
g2 k11

(2π)11 cg

(kd)n . (20)

The latter equations reproduce the original DIA (in
deep water) if F is interpolated from the discrete
spectral space, but where cg(kσ)−1 are evaluated for
the actual quadruplet components.

To illustrate the potential of the GMD a simple test
case will be presented. Using the ‘out-of-the-box’
test case of WAVEWATCH III TM a model spec-
trum at 60 m water depth is generated. From this
spectrum, the DIA interactions (used in the model
integration), the exact interactions and the GMD in-
teractions based on F (f, θ) with λ = 0.25 (single pa-
rameter quadruplet definition), Cd = 107, Cs = 106,
m = 4 and n = −3.5 are computed. The latter pa-
rameter settings are tentative default settings from
Tolman (2008), and should be nearly identical to
the DIA in deep water. The results are presented in
Fig. 1. As expected DIA and GMD results (Figs. 1a
and c) are nearly identical, and are similar in shape
and magnitude compared to the exact interactions
(Fig. 1b).

To illustrate scaling behavior of the different ap-
proaches, shallow water conditions are artificially
generated by considering the same spectrum and
nonlinear parameterizations in a water depth of 1 m
instead of 60 m. Resulting interactions are presented
in Fig. 2 Exact interactions (Fig. 2b) in these ex-
tremely shallow conditions are three orders of mag-
nitude larger than in the near-deep water conditions
of Fig. 1. The interactions computed by the DIA
(Fig. 2a) lag in strength by more than two orders of
magnitude, making the source term invisible in panel
(a). In contrast, the GMD (Fig. 2c) produces inter-
actions with the proper magnitude and reasonable
shape, even without detailed optimization. Hence,
the GMD shows superior behavior compared to the
DIA in extremely shallow water even if only a single
representative quadruplet is used. Previously, Tol-
man and Krasnopolsky (2004) have shown that a
multiple version of a DIA will significantly improve
model behavior in deep water, when compared to a
traditional DIA.

4 GMD OPTIMIZATION

Traditionally, parameterizations for nonlinear inter-
actions have been tested and calibrated to accurately

represent interactions for test spectra. However, this
does not guarantee good behavior for model inte-
gration. For instance, the DIA does not represent
interactions for test spectra very well, yet results in
adequate model integration. Conversely, a DIA with
expanded quadruplet definition with a single repre-
sentative quadruplet works much better for individ-
ual test spectra, yet does not result in stable model
integration (Tolman, 2004).

The above behavior can be attributed to the strongly
nonlinear behavior of the interactions, combined
with the inherent assumption of linear model behav-
ior when working with test spectra only. To prop-
erly address the full nonlinear behavior of the inter-
actions, parameterizations for the interactions need
to be assessed in the context of full model integra-
tion, optimizing the full model results rather than
the behavior for test spectra only. Such a ‘holistic’
optimization procedure was introduced by Tolman
and Krasnopolsky (2004) and Tolman (2005). The
present optimization approaches are an extension of
the method introduced in the previous two papers.
They will be described in full in Tolman (2009). The
present manuscript will only outline the basic ap-
proaches and present some early results.

The holistic optimization has three key elements; (i)
test cases to be considered, (ii) metrics to use in
the optimization, and (iii) the actual optimization
technique. In the previous papers the test cases con-
sisted of deep water time- and fetch-limited growth.
Metric considered were relative errors in the wave
height Hs, and in the one- two-dimensional energy
and steepness spectra, and the optimization was per-
formed using genetic optimization techniques (e.g.,
Eiben and Smith, 2003). For the present study, all
three basic approaches have been revisited.

Test cases considered are separate in deep and shal-
low water cases. The deep water cases, identified by
number, include

01 Traditional time-limited growth.
02 Traditional fetch limited growth with wind per-

pendicular to the coast.
03 Time limited frontal page case of Tolman

(1992).
04 Time limited case with constantly rotating

wind.
05 Slanting fetch case with wind under 45◦ with

coast.
06 Time-limited wave growth in the presence of

swell.
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The shallow water cases include

11 Time limited growth with stepwise reduced wa-
ter depths.

12 Wind seas for onshore winds approaching a
beach (1:250 beach slope, 1:1000 foreshore).

13 Swells approaching the same beach.

Metric for model assessment are based on prognos-
tic parameters provided by the model. In the opti-
mization procedure, mean parameters considered are
the significant wave height (Hs), spectral peak fre-
quency, mean direction and directional spread, high-
frequency spectral energy level, frequency of no flux
in nonlinear interactions, and the fit of the steepness
spectrum in the high-frequency range of the spec-
trum. Added to this are one-dimensional spectral
measure including the energy spectrum, steepness
spectrum and (1-D) nonlinear interactions, and the
mean direction and directional spread as a function
of the spectral frequency. Finally, two-dimensional
spectral parameters considered are the full energy
and steepness spectrum and the full interactions. For
each parameter an error measure is generated based
on local normalization. For instance, for the wave
height Hs each data point for each test case is nor-
malized as

Hs,p − Hs,b

Hs,b

, (21)

where the indices p and b represent the results from
the GMD parameterization and the baseline (ex-
act) computations, respectively. By normalizing this
way, relative errors in initial growth are considered
equally important as relative errors for large sea
states. When N such data point are available per
test case, the rms relative error per test case then
typically is defined as

εH =

√

√

√

√

1

N

∑

N

(

Hs,p − Hs,b

Hs,b

)2

. (22)

Finally, a weighted sum of all error measures for
each case produces a single error or score for each
test cases, and scores for individual test cases can
be combined into a single score or error measure in
the same way. Initially mean wave parameter errors
have been more heavily weighted to assure that criti-
cal measures like the significant wave height are well
reproduced in the optimization procedure.

Optimizing the GMD involves many parameters to
be optimized with many possible local minima of

errors in the full parameter space. Due to local min-
ima of errors, and possible discontinuous behavior of
errors in parameter space, traditional steepest de-
scent methods do not work well for this problem.
An efficient way to attack this optimization prob-
lem is a genetic optimization approach as previously
used in Tolman and Krasnopolsky (2004) and Tol-
man (2005). Genetic algorithms form a subset of
what is generally identified as Evolutionary Com-
puting (e.g., Eiben and Smith, 2003). In such meth-
ods, populations are described with the genome of
individuals. Individuals in the population generate
offspring using rules loosely based on natural repro-
duction, and the population retains only the most
successful members, loosely following ideas of natu-
ral selection. This process has also been described as
directed random search. Generally, approaches from
the previous studies have been used here, with the
exception that parameter space is described with
real number rather than with bit strings. Note that
a descent method can still be used seeded with good
estimates from the genetic search routine. This al-
lows for local convergence, and for a convergence test
on the genetic approach.

It should be noted that independent of the optimiza-
tion techniques used, optimization should be done
in stages. First, deep water parameters can be op-
timized by considering deep water parameters only.
For shallow water, optimum values for the deep wa-
ter can then be kept constant while optimizing shal-
low water parameters.

Finally, a model and a baseline solution need to de-
fined in and against which the GMD is optimized.
The wave model will be the WAVEWATCH III TM

model with all its default settings (including shallow
water source terms) except for the nonlinear interac-
tion. As in previous parts of this study, the baseline
results against which the GMD is optimized will be
the Webb-Resio-Tracy (WRT) (Webb, 1978; Tracy
and Resio, 1982; Resio and Perrie, 1991) method.
Calculations are performed with the portable pack-
age developed by Van Vledder (2002b, 2006)3. Also
needed is some reference DIA to establish the rela-
tive improvement obtained with an optimized GMD.
Two reference DIAs will be considered. The first are
the results obtained with the default DIA of the wave
model (λ = 0.25, Cd = 1.107), henceforth referred to
as the WW3 results. The second are results obtained
with the traditional DIA settings from the WAM
model (WAMDIG, 1988, λ = 0.25, Cd = 3.107), and
will henceforth be denoted as WAM results.

3 Model version 5.04 used here.
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Table 1: Results of deep water optimization ex-
periments for GMD. Error is mean error
for cases 01, 03, 04, and 06.

GMD quadruplet(s) error
base λ µ Cd (%)

N(k) 0.226 — 1.39 108 48.6
0.101 0.032 3.71 108

0.218 0.020 5.80 107 41.1
0.441 0.232 4.63 107

F (f) 0.232 — 2.40 107 23.4
0.070 0.025 8.13 107

0.108 0.080 3.99 108 17.6
0.282 0.006 3.09 107

In the present manuscript, only initial results of the
holistic optimization will be presented. The main fo-
cus will be two-fold. First, a comparison will be made
between the optimization potential of the GMD
based on either N(k) or F (f). The former has the
advantage of being closer to the original formulation
of the nonlinear interactions, but the latter provides
full backward compatibility with the DIA. Most im-
portantly, however, is the final accuracy of the op-
timized approach. Second, a first indication of the
optimization potential is given by focusing on two
GMD configurations only; a minimal extension of
the DIA with a single, single-parameter representa-
tive quadruplet, but fully optimized for all depths,
and a two-parameter (λ, µ) three quadruplet config-
uration to asses optimization potential.

A first set of optimizations considers four deep wa-
ter experiments; single parameter, single quadruplet
layouts, and two-parameter (λ, µ) three quadruplet
layouts for either the N(k) or F (f) based GMD. To
facilitate quick turn around of these initial exper-
iments, the fetch-limited deep water tests (02 and
05) have not been considered in the optimization
experiments. For the single quadruplet layout, the
population consists of 100 members, and only 10
generations are needed to come to convergence. For
the three quadruplet layout, the population consists
of 300 members, and 120 generations are consid-
ered. The best performing realization of the popula-
tion is retained, and refined with a steepest descent
method. The results of these optimization experi-
ments are presented in Table 1.

From the results presented in Table 1 it is clear that
the F (f) representation of the GMD is far superior
with respect to its capability to optimally represent
the exact interactions in a full wave model. The fail-

ure of the N(k) based GMD to do so is rooted in its
inability to sustain the proper wave growth rates.
This is illustrated in Fig. 3, which shows the wave
heights for the latter GMDs (red lines) for test 01 to
be severely underestimated compared to the base-
line case (WRT, green), in spite of the model opti-
mization. The previous DIA results (blue lines) do
not show this deficiency. The corresponding spectra
as presented in Fig. 4 indicate that spectral energy
occurs at reasonable frequencies, but that spectral
energy levels are not sustained by this GMD. The
difference for the deep water test are sufficiently con-
vincing to not consider further optimization of N(k)
based GMD, and instead consider the F (f) based
GMD only.
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Fig. 3: Significant wave heights Hs as a func-
tion of the time t for test 01. for (a)
the baseline case (WRT, green line), (b)
the traditional DIA (blue lines; dashed:
WW3, dotted: WAM) and the optimized
GMD based on the N(k) spectrum (red
lines, dashed: one quadruplet, dotted:
three quadruplets.
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Fig. 4: One-dimensional spectra F (f) for Fig. 3
after six hours of model integration.
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Table 2: Results GMD configurations from shallow water optimization experiments for GMD, based on
cases 11, 12, and 13. F (f) based GMD using Eqs. (14) and (18) through (20).

GMD configuration error
λ µ Cd Cs m n (%)

WW3X 0.250 — 1.00 107 3.53 105 0.16 -3.50 43.4
GMD1 0.232 — 2.40 107 3.10 105 0.40 -3.50 41.6

0.070 0.025 8.13 107 7.91 104

GMD3 0.108 0.080 3.99 108 2.34 105 0.02 -3.50 44.1
0.282 0.006 3.09 107 6.86 105

Table 3: Overall errors in % for each test case for the traditional DIA (WW3, WAM), and for optimized
GMDs (WW3X, GMD1, GMD3, see Table 2).

test case
01 02 03 04 05 06 11 12 13

WAM 26.2 25.1 23.1 24.2 25.4 34.7 23.9 29.0 83.2
WW3 27.4 27.6 22.6 25.0 26.4 37.3 26.1 31.2 83.5

WW3X 27.4 27.6 22.5 25.1 26.5 37.3 24.6 31.0 74.5
GMD1 22.3 21.9 18.9 20.2 20.6 32.2 21.0 29.5 74.4
GMD3 13.7 15.3 13.7 13.2 17.0 30.0 14.4 21.6 96.2

With the initial optimization of the F (f) based
GMD for deep water, shallow water optimization
will be considered. Three optimizations will be per-
formed. First, the traditional deep water DIA as
used in WAVEWATCH III TM will be expanded to
shallow water, leaving the deep water setting un-
changed. Hence, on quadruplet is considered with
λ = 0.25 and Cd = 1. 107, and m, and Cs are op-
timized. This experiment is identified as WW3X.
Second, this experiment is repeated with the opti-
mum settings of λ and Cd from Table 1 (identified
as GMD1). Note that n could be optimized also, but
is set to n = −3.5 to enforce scaling behavior in ex-
tremely shallow water. Finally, the two-parameter,
three quadruplet deep water GMD defined in Table 1
is expanded to shallow water by optimizing m and n
(single value for all quadruplets) and Cs for each rep-
resentative quadruplet (identified as GMD3). Note
that the shallow water optimization considers tests
11, 12, and 13 only. A population with 100 mem-
bers (150 for GMD3) and 10 (25) generations are
considered, followed by a steepest descent method
as described for the deep water test cases.

The resulting GMD configurations with their bulk
errors are presented in Table 2, This Table indicates
that the fully optimized GMD consistent with the
DIA (GMD1) shows slightly better results than the

GMD representing the traditional DIA in deep water
but using optimized shallow water behavior of the
GMD (WW3X).Somewhat surprisingly, the three-
quadruplet GMD (GMD3) does not show better re-
sults. This will be discussed further below. Note that
values of Cs found in the optimization are consistent
with Tolman (2008), but that values of m are some-
what smaller (m ≈ 4 expected). The latter may not
be too surprising, since no strong dependency on m
is expected from the results of Tolman (2008).

Table 3 presents errors per test case for the various
GMD configurations considered here. For individ-
ual test cases, additional optimization is generally
shown to result in smaller errors. Several additional
observations can be made from this Table.

First, the fetch-limited deep water test cases (cases
02 and 05) have not been used in the optimization,
yet show systematic improvement with the test cases
that have been actively optimized. This indicates the
value of optimizing the wave model to idealized test
cases, because cases not included in the optimization
do improve in lockstep. For GMD3, however, these
cases do not improve as much as the other cases,
making the case for them to be included in the op-
timization.
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Fig. 5: Mean wave parameters for test 03. (a) Significant wave height Hs. (b) Peak frequency fp. (c)
Mean Direction θ. (d) Directional spread σ. Green line: WRT. Dashed red line: WW3. Dotted red
line WW3X. Dotted blue line: GMD1. Dashed blue line: GMD3. Thin black line: wind direction.

Second, for deep water the WW3 and WW3X
configurations consider identical equations for snl.
However, the numerical implementations (DIA ver-
sus GMD) are vastly different. Together with the
strongly nonlinear behavior of snl, this explains mi-
nor differences between resulting error of WW3 and
WW3X for the deep water test cases 01 through 06.
For shallow water, WW3X outperforms WW3 as ex-
pected.

Third, case 06 shows anomalously large errors com-
pared to the deep water tests, in particularly the
closely related test 01. This is die to erroneous dif-
ferences in the swell conditions used in the baseline
case (WRT) and in the GMD optimization. Because
this has no impact on the general optimization be-
yond errors of the latter test case, this has not been
corrected here.

Fourth, shallow water test case 13 shows anomalous
behavior as it does not improve for the GMD3 con-
figuration. This behavior is responsible for the in-
crease overall shallow water error for GMD3 in Ta-
ble 2. Note that the other two shallow water test
(11 and 12) do show large improvement for GMD3.
In this context, it is important to realize that the
present study represents the first ever attempt at
optimizing the shallow water aspects of the GMD,
whereas much more experience is available for op-
timizing its deep water aspects (e.g., Tolman and
Krasnopolsky, 2004; Tolman, 2005). Shallow water
optimization will be addressed in much more detail
in Tolman (2009).

As illustrations of the effects of the optimization,
Figs. 5 and 6 show mean wave parameters for
the WRT, WW3, WW3X, GMD1 and GMD3 ap-
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Fig. 6 : Like Fig. 5 for test 05.

proaches, for a test that was included in the opti-
mization (test file 03), and for a test that was not
included (test 05).

For test 03 the traditional DIA and the equivalent
GMD (WW3 and WW3X, red lines), show an ex-
cellent reproduction of the exact (WRT, green lines)
wave heights Hs, and moderate but notable deficien-
cies in the peak frequency fp, mead direction θ and
directional spread σθ. The equivalent fully optimized
GMD (GMD1, dotted blue lines) shows improved
behavior of the peak frequency fp, and directional
spread σθ, at the cost of a poorer description of the
wave height Hs. GMD3 shows no improvement of
the mean direction compared to WW3X or GMD1.

Test 05 (Fig. 6) represents a case that has not been
used in the present optimization experiments. As
with test 03, the most complex optimized GMD
(GMD3) shows better results than the more tra-
ditional GMDs and DIAs (WW3, WW3X, and

GMD1). The exception is the mean direction, where
all four approximations show similar errors when
compared to the exact WRT solutions. The compa-
rable behavior for this test indicates that optimizing
a GMD to idealized cases should translate in better
behavior for other cases, but the lack of improvement
for the mean direction for GMD3 suggests that more
can be gained if this test is used in the optimization.
These results are consistent with the discussion of
Table 3 above.

Figure 7 shows various one-dimensional spectral
measures for test 03 after 6 h of model integra-
tion (compare to Fig. 5). The most complex GMD
(GMD3, blue dashed line) shows significant improve-
ments over simpler DIA and GMD approaches, par-
ticularly for the spectra F (f) and G(f), the direc-
tional spread and the nonlinear interactions. For the
latter parameter, only the GMD3 reproduces the
dual positive peak at low frequencies as displayed
by the exact solution (WRT, green line).
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Fig. 7: One-dimensional spectral wave parameters for test 03 after 6 h of model integration.. (a) Spec-
trum F (f). Steepness spectrum G(f) = k2F (f). (c) Mean direction θ(f). (d) Directional spread
σ(f). (e) Directionally integrated interactions snl(f). (f) Nonlinear energy flux in frequency space
M(f). Legend as in Fig. 5. Chain line in panel (c) represents wind direction. Panels normalized
with maximum value for WRT.

Fig. 8: Nonlinear interactions corresponding to Fig. 7e for (a) WRT, (b) WW3, and (c) GMD3 ap-
proaches. Logarithmic scaling, red positive, blue negative, identical scaling for all panels.
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Figure 8 shows the full two dimensional nonlinear
interactions corresponding to Fig. 7e for the exact
(WRT), DIA (WW3) and GMD (GMD3) methods.
Upon casual inspection, the three interactions look
very similar. Close inspection, however, shows that
the GMD3 interactions retain much more detail from
the WRT interactions than the WW3 interactions,
explaining the large difference found in Fig. 7e.

Finally, Fig. 9 presents spectra for test 13, repre-
senting swell on a beach in extremely shallow water.
Note that the WW3 method (red dashed line) effec-
tively ignores the corresponding strong interactions.
Thus differences between the WRT (green lines) and
WW3 methods identify the nett effect of the nonlin-
ear interactions. At 6 m water depth (Fig. 9a), the
interactions start influencing the spectral shape. At
3 m the spectral shape is strongly influenced. All
DIA based approximations used here result in a dis-
integration of the spectrum, tentatively suggesting
that more quadruplets are needed to describe the
interactions (based on the experience gained with
Tolman, 2005).
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Fig. 9: One-dimensional spectra F (f) for test
06 at (a) 6 m water depth and (b) 3 m
water depth. Legend as in Fig. 5.

Conventionally, the four-wave (quadruplet) interac-
tions are assumed to be small compared to three-
wave (triad) interactions in extremely shallow wa-
ter. The present results suggest, however, that four-
wave interactions can have a significant impact on
the spectral shape in severely depth-limited condi-
tions.

It should again be noted that the optimization ex-
periment presented here only represent the tip of
the iceberg with respect to systematic optimization
of the GMD, in particular with respect to the strate-
gies used to optimize all free parameters. A more in-
depth approach will be presented in Tolman (2009).

5 NEURAL NETWORKS

In a Neural Network Interaction Approximation
(NNIA), a direct mapping of the interactions on the
spectrum is pursued. A precursor to recent mapping
approaches can be found in HHAB, where an interac-
tion approximation based on Empirical Orthogonal
Functions (EOF) was suggested. Efforts at NCEP to
develop an NNIA are documented in (Krasnopolsky
et al., 2002, 2003; Tolman and Krasnopolsky, 2004;
Tolman et al., 2005; Krasnopolsky et al., 2008). Sim-
ilar studies working to a NNIA have also been re-
ported in Wahle et al. (2009).

The basic design of the present NNIA is described in
Tolman and Krasnopolsky (2004) and is illustrated
here in Fig. 10, which is reproduced from the latter
paper.

original NNIA without QC
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Fig. 10: Layout of a hybrid or compound
NNIA, reverting to the WRT algorithm in
cases where the quality control (QC) indi-
cates failure of the NN. X and Y contain
decomposition coefficients for the normal-
ized spectrum F̃ and source S̃nl. From
Tolman and Krasnopolsky (2004).
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Fig. 11: Spectra for a homogeneous growth case with constant wind with U10 = 20 ms−1 After 12h of
model integration. (a) Exact (WRT) solution. (b) NNIA with maximum error in QC εmax = 2.5%.
(c) NNIA with εmax = 5%. Identical logarithmic scaling in all panels. Wave heights Hs depicted
in lower left corner of each panel. No high frequency filtering.

In an NNIA, a Neural Network (NN) is used to de-
scribe the mapping between the spectrum and the
source term. Although this mapping can be done
considering the spectrum and source term directly
(e.g., Wahle et al., 2009), proper scaling can be en-
forced independent of the mapping by applying the
NN to normalized spectra and source terms Normal-
izing with an energy density (Fn), frequency (fn)
and direction (θn), results in the following normal-
ized parameters identified as F̃ , etc.

F̃ (f̃ , θ̃) = F−1
n F (f, θ) , (23)

S̃nl(f̃ , θ̃) = g4 F−3
n f−11

n Snl(f, θ) . (24)

f̃ = f−1
n f , (25)

θ̃ = θ − θn . (26)

Initial development of the NNIA focuses on its most
critical capabilities, i.e., the reproduction of wave
growth. Hence, theses studies concentrate on single
peaked wind sea spectra for which Fn, fn, θn are
naturally defined as their spectral peak values.

To reduce the dimensionality of the NN, it is applied
to coefficients X and Y from a decomposition of the
spectrum and source term

F̃ → X , S̃nl → Y . (27)

In Tolman et al. (2005) Empirical Orthogonal Func-
tions (EOFs, Lorenz, 1956; Jolliffe, 1986) were estab-
lished as efficient basis functions for the NNIA. With
the adoption of EOFs, this NNIA can be considered

as a generalization of the EOF based approach dis-
cussed in HHAB.

The development of an NN consists of a process
called training. In this process, the NN is optimized
using a large set of spectra and the corresponding
exact (WRT) interactions. In the most recent at-
tempts to develop an NNIA, training is performed
using spectra and source terms from a one-point
WAVEWATCH III TM model representing time lim-
ited wave growth for constant or slowly varying wind
speed and direction. In the latter case conditions are
varying sufficiently slow to assure that the spectrum
remains unimodal. The cost of the resulting NNIA
proved comparable to that of the DIA, with nearly
all the computational effort spend in the decomposi-
tion of F̃ into X and the construction of the source
term S̃nl from Y .

By nature, it is impossible to train the NN for all
possible spectra, even if only wind seas are consid-
ered. It is, therefore, not expected that the the NNIA
will always give appropriate results. Fortunately, it
has been proven possible to estimate when the NN is
not accurate, by estimating X (denoted as X

′) from
Y using an ‘inverse’ NN (iNN). If X and X

′ diverge
too much, the NN is inaccurate, and the source term
should be estimated from the original (in this case
WRT) algorithm. Such an hybrid or compound al-
gorithm (e.g., Krasnopolsky et al., 2008) proved to
be the first NNIA application able to produce stable
albeit noisy wave growth in a numerical model in
Tolman and Krasnopolsky (2004).
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Fig. 12: Like Fig. 11 with high-frequency filtering added for NNIA. (a) represents classical DIA without
filtering.

An additional benefit of introducing the explicit
quality control (QC) to the NNIA is that spectra for
which the NNIA does not work properly are identi-
fied automatically. This provides a natural method
to incrementally increase the training data sets for
the NNIA, targeting new spectra not sufficiently rep-
resented in the previous training data sets.

Figure 11 shows spectra from a homogeneous wave
growth test with constants wind speeds U10 =
20 ms−1. These results are comparable to Fig. 7 of
Tolman and Krasnopolsky (2004), with the excep-
tion that the latter case was included in the NN
training, whereas the present test is not. For a max-
imum allowed error in the QC of εmax = 2.5%, the
spectrum and wave height produced with the NNIA
are nearly identical to those obtained with the exact
(WRT) method (compare Figs. 11a and b). For max-
imum allowed errors of εmax = 5% (Fig. 11c), stable
wave growth is found, but with clear deficiencies to
the spectral shape. These results are consistent with
those presented in Tolman and Krasnopolsky (2004).

The deficiencies in (Fig. 11c) are tentatively at-
tributed to the inability of the NNIA to simultane-
ously describe large-scale features of the interactions
resulting in spectral evolution, and small scale fea-
tures stabilizing the shape of the spectral tail. The
latter are essentially treated as noise by the NNIA,
and rather than such features stabilizing the spec-
tral shape, they result in accumulation of ‘noise’ (see
also HHAB). In (Fig. 11c) this results in a ‘hole’ in
the spectrum at higher frequencies. For (Fig. 11b)
it results in minor oscillation in the high-frequency
part of the spectrum (figures not presented here).

A simple way to address this hypothesis, is to add an
explicit noise filter for high frequencies to the model
integration. Tentatively, such a filter should be con-
sistent with the interactions, and could be based
on previously suggested diffusion approximations to
the nonlinear interactions (e.g., HHAB, Zakharov
and Pushkarev, 1999; Jenkins and Phillips, 2001).
A more simple approach, using an unresolved DIA
at high frequencies only, and converting this from a
source term to a filter, is presented in Tolman (2008).
Details of this filter will not be reproduced here.

Note that adding a filter to the NNIA in this way is
expected to provide an incremental improvement to
the algorithm only, because the NNIA has not been
tuned explicitly with this filter, and hence may be
expected to somewhat counteract the filter.

Figure 12 shows model results obtained with the
NNIA including the high-frequency filter, as well
as results obtained with the DIA for reference pur-
poses. For εmax = 2.5% (compare Figs 11b and 12b
) filtering has little impact on the spectral results
and modestly increases the wave height. Note that
this NNIA clearly reproduces results obtained with
the WRT approach more closely than the DIA. For
εmax = 5% (compare Figs 11c and 12c ) filtering re-
duces spurious spectral features in the model, but
does not remove the ‘hole’ in the spectrum.The fil-
tering also has a positive impact on the run time of
the model, as is illustrated in Table 4. The positive
impact of the high-frequency filtering on the spec-
tral shape and the model run times clearly indicates
the inability of this (immature) NNIA to appropri-
ately deal with spectral noise, and the need for a
successful NNIA to explicitly deal with such noise.
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Table 4: Relative run times of the wave model
with various interaction approximation
for case of Figs. 11 and 12. ‘filt.’ includes
high-frequency filtering.

WRT NNIA DIA
1.25% 2.5% 5.0%

orig. 1 0.86 0.77 0.84 0.012
filt. 0.83 0.56 0.68

0 6 12 18 24
0

200

400

600

800

1000

 t (h)

∆ t

(s)

Fig. 13: Time step ∆t as a function of model
integration time t for model using ex-
act WRT interaction (green solid line) or
NNIA with εmax = 2.5% without filtering.
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Fig. 14: Neural Network QC errors ε in % for
WRT model integration without using
NN (green line) or NNIA with εmax =
2.5% (dashed lines) without filtering (red)
or with filtering (blue).

The NNIA run time for a single computation is com-
parable to the run time of the DIA (Tolman et al.,
2005). Considering this, the run times of the model
using the NNIA (Table 4) are still far from the po-
tential of the NNIA, even with the filtering applied.
There are two possible explanations for this. First,

QC in the NNIA may result in the NNIA to be used
only sparingly, and the algorithm generally reverting
to the WRT method. Second, time steps in WAVE-
WATCH IIITM are computed dynamically. Noise in-
troduced in the computations reduces time steps and
hence increases model run time.

Figure 13 shows the dynamic source term integration
time step ∆t as a function of the model time t for
a model using the WRT (solid green line) or NNIA
parameterizations (dashed red line, εmax = 2.5%, no
filtering). Using the WRT method, initial time steps
are small (∆t = ∆tmin = 15s), identifying rapid
changes in the spectral shapes. As time progresses,
spectral changes become smaller, resulting in larger
time steps. For the NNIA (dashed red line), time
steps follow those of the WRT, but episodically are
much smaller. This clearly indicates that noise in the
NNIA systematically increases model run times.

Figure 14 presents NNIA QC errors ε for various
model runs. The green line represent errors ε ob-
tained with the WRT only (or the NNIA with εmax =
0). The dashed red line represents errors from an
NNIA with εmax = 2.5% without filtering, and the
blue dashed lines represents the same NNIA with
filtering. To focus more on initial integration where
much effort is spend due to the small time steps, a
logarithmic time scale is used. Various observations
can be made from this figure.

First, for initial growth (t < 1h) large errors ε oc-
cur even if the integration is not using the NNIA
at all. Consequently, the NNIA will always revert to
the WRT method, and the speed of the NN in the
NNIA is never utilized. The large errors for initial
growth indicate inaccuracies in the NN. With the
NNIA design of Fig. 10 these inaccuracies can be re-
lated to either the inability of the EOFs to describe
initial growth conditions, or to an underrepresenta-
tion of such conditions in the training data. Improv-
ing the NN/NNIA in this model regime will be la-
bor intensive but fairly trivial, in particular since the
NNIA objectively identifies spectra to be added to
the training data set. Considering that a dispropor-
tionate part of the model integration effort is used in
this computation regime, it is expected that such an
improved NNIA will be significantly more economi-
cal than the NNIA used here.

Second, for larger times t (t > 1h) errors ε for the
WRT only model integration reduce to finite val-
ues of typically ε ≈ 1− 2%. This tentatively implies
optimum values for εmax, and explains run time be-
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havior in Table 4. For εmax = 1.25%, the NN is in-
sufficiently accurate to be used often, and hence run
time improvements compared to the WRT method
are minimal. For For εmax = 2.5%, the NN can be
used often, but error growth is limited. this explains
the improved run time compared to the model with
εmax = 1.25%. For εmax = 5%, the NN is often
engaged, but errors are allowed to grow more, ap-
parently resulting in smaller time steps and hence
no benefit in terms of model run times. Consider-
ing this, εmax = 2.5% appears to be a near-optimal
setting for the present NNIA.

Third, for larger times t (t > 1h), errors of the NNIA
based model (dashed lines) remain close to the pre-
scribed maximum value (ε ≈ εmax). This is indicative
of cyclic behavior of the NNIA. When the NNIA is
engaged, noise accumulates resulting in a decrease
in time step and and increase in errors. This results
in the WRT to be engaged, which smooths out the
noise and reduces errors. The corresponding evolu-
tion of time steps as shown in Fig. 13 indicates that
this cyclic behavior is episodic rather than more ran-
dom in nature. This cyclic behavior indicates that
noise accumulation in the NNIA is its main obsta-
cle for becoming highly economical (i.e., becoming
as economical as the DIA).

Fourth, the effect of filtering can be assessed by com-
paring the results of the NNIA without and with
filtering (red and blue dashed lines, respectively).
Without filtering two large error spikes occur for
t ≈ 1h and t ≈ 2h (red line). The filtering sig-
nificantly reduces the first spike, and removes the
second spike (compare red and blue line). However,
the filtering cannot suppress the above described cy-
cled behavior. Hence, the present filter reduces error
growth sufficiently to remove error spikes, but not
sufficiently to break cyclic error growth and miti-
gation. As mentioned above, limited impact of the
filter was expected, because the filter was not inte-
grated in the NNIA and was not considered in the
NNIA training process.

Considering the above observations, the following
recommendations for future work can be made.

1) Address NNIA QC errors in initial growth by
applying incremental training as naturally sup-
ported by the NNIA and by assessing possible
impacts of EOF selection.

2) Assess noise sources and locations in spectral
space as occur in the wave model integration.

3) Based on the above assessment, remove noise by
directed training of the NNIA as far as possible.

4) Where noise accumulation cannot be removed
from the NNIA, design filter techniques to re-
duce noise levels. It is essential, that these tech-
niques are fully integrated in the NNIA and its
training.

5) Remain focused on idealized wave growth con-
ditions, as the behavior of interactions at differ-
ent spectral scales during wave growth is a key
process to be reproduced by an NNIA to be po-
tentially successful for practical wave modeling.

6) Use NNIA QC errors directly in the develop-
ment and assessment of quality of NN realiza-
tions (training).

7) Pursue the direct mapping techniques suggested
by Wahle et al. (2009) to i) remove costly EOF
decompositions and ii) possibly avoid EOF er-
rors in early growth. iii) Avoid later complica-
tions expected to arise with an EOF description
of multi-modal spectra.

Whereas the present NNIA is close to being able
to produce acceptable interactions compared to the
WRT, the present gain in model run time is clearly
insufficient to justify the complication of develop-
ing and implementing this NNIA in practical wave
model applications. The main issue standing be-
tween the NNIA and practical applications appears
to be the development of methods to suppress or
eliminate building up of noise in the spectra during
model integration.

6 CONCLUSIONS AND OUTLOOK

The present paper documents ongoing development
of the Generalized Multiple DIA (GMD) and Neu-
ral Network Interaction Approximation (NNIA) for
quadruplet nonlinear wave-wave interactions in wind
wave models. Development of both approximations
differs from previous efforts in that progress is mea-
sured using full wave model integration rather than
mapping of interactions to individual spectral. For
the GMD, this results in much bigger impacts than
obtained in some previous attempts. For the NNIA
it is essential to prove its viability.

The GMD is nearing maturity. The algorithms are
well tested and numerically optimized, and the
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method is shown to be able to realistically repro-
duce nonlinear interactions at arbitrary depths. Ob-
jective parameter optimization techniques have been
developed and are nearing maturity. Initial param-
eter optimization experiments show that the GMD
can dramatically improve wave model behavior com-
pared to the traditional DIA, in terms of being able
to reproduce model integration results obtained with
the exact WRT interaction algorithm.

The NNIA is less mature. Major progress has been
made in the sense that acceptable model integrations
based on an NNIA have been made. For an NNIA
to be successful, it needs to have internal quality
control and be able to revert to an underlying al-
gorithm (here WRT) if the NNIA itself is found to
be inaccurate. Hence, an NNIA method should be
considered as a numerical accelerator of an underly-
ing direct parameterization, rather than as a full in-
dependent interaction parameterization. The major
shortcoming of the present NNIA is lack of appropri-
ate training and the apparent accumulation of noise
during model integration. The former problem can
be addressed, but it will be labor intensive to do so.
The latter problem will require explicit treatment of
noise either within the NNIA or by filtering. The fi-
nal viability of an NNIA is expected to be strongly
linked to the ability to address the latter issue.

The maturity of the GMD (and other alternatives
to the DIA), and the potential of the NNIA can
be tested in limited ways in practical wave mod-
els, because all present physics parameterizations in
such model have been tuned based on the DIA. This
implies either that such physics packages should be
re-tuned for better interaction approximations, are
conversely, that they should be developed in a differ-
ent way. A new way of developing physics packages
for wave models intended to us the GMD could be:

1) Develop physics packages for idealized wave con-
ditions and possibly limited area model applica-
tions using the exact nonlinear interactions ap-
proaches such as WRT.

2) Explicitly optimize the GMD parameters for the
package as developed using exact interactions al-
gorithms.

3) Fine tune physics parameter setting for a GMD
based model for both the original test cases and
full practical wave model applications.

4) If the NNIA proves successful, develop an NNIA
accelerator for the nonlinear interactions in the

previously developed wave model physics pack-
age and wave model application.

Note that this strategy is not dependent upon the
GMD. With minor modifications it can be applied
to other improved nonlinear interaction approxima-
tions. In particular, a successful NNIA can be used
in conjunction with any interaction approximation.
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