Wave energy budget for Pacific island nearshore vironment Christine Pequignet Janet Becker

Mark Merrifield

US Army Corps of Engineers®

Motivation

Goal: prediction of coastal inundation and erosion along island shorelines due to storm waves

Understanding and quantifying the amount of energy that reaches islands shoreline, in fringing reef dominated environments.

Main results

- Infragravity dominates the spectrum on the reef flat and near the shoreline
- Consequence of strong dissipation of sea and swell energy
- Energy at the shore is strongly dependent on water depth which is function of offshore wave height through setup

Deployments

<u>Ipan,Guam</u> July 2006 tides ~0.5m

Mokuleia, Oahu April 2004 tides ~0.3m

Conditions during deployment

Energy flux spectrum

Infragravity signal

• IG energy is proportional to sea/swell energy

- Reefs behave like a dissipative beach:swash infragravity dominated
- Infragravity waves are partially dissipated and partially reflected

Energy Flux ratio

Energy flux equation

dF/dx(f) = D(f) + R(f) + N(f)

- D(f) dissipation (friction $\varepsilon_f(f)$ + breaking $\varepsilon_d(f)$)
- R(f) Reflection
- N(f) Non-linear transfer of energy (accounts for <2% of dissipation)

 $\varepsilon_{\rm f}(f) = (3\sqrt{\pi/16}) \rho g (B^3 f/\gamma^4 h^5) H_{\rm rms}^{7}$

 $\varepsilon_{\rm d}(f) = \rho C_{\rm f} (1/6\pi) (2\pi f/\sinh kh)^3 H_{\rm rms}^{3}$

Reflection

Divergence of energy flux

Estimation of friction coefficients

Guam forereef Cf<0.83 Breaking model inadequate

Guam reef flat Cf~ 0.03

Mokuleia reef Cf~ 0.052 Breaking is reasonable

Consequence for shoreline energy

Conclusion

- Infragravity dominates the spectrum on the reef and near the shoreline
- Consequences of strong dissipation of sea and swell energy
- Energy at the shore is strongly dependent on water depth which is function of offshore wave height through setup

Future work

- Estimation of non-linear term N(f)
- Swash measurements using video images
- Assessment of role of porosity using reflection coefficient
- Assessment of 3D topography effect using numerical models

Acknowledgment

- Kimball Millikan, Tyson Hilmer, Oliver Vetter, Yvonne Firing, Jerome Aucan, Chris Kontoes
- U.of Guam Marine Lab staff
- fundings: Seagrant and US Army corps of engineers