Phase-Resolving Simulation of Wave Evolution over a Shallow Shelf Patrick Lynett, Texas A&M University

Motivation for Study

- Investigate the behavior of dissipation mechanisms in phase-resolving, timedomain simulation
 - Unidirectional and directional random waves over a reef
 - □ Breaking & bottom friction
 - Boussinesq & RANS (unidirectional) models

Methodology/Outline

- Introduce experimental data and numerical models (Boussinesq and 2DV RANS)
- Comparisons, focusing on:
 - □Wave height
 - Mean water level
 - Spectral transformation
 - □Peak period
 - Directionality

Dependence of mean water level on friction factor

Summary of Conclusions

- If not interested in vertical and turbulent detail of the flow, Boussinesq provides equal accuracy to RANS
 - Wave height, water level, spectral transformation
- Shelf resonance is a dominant factor near the shoreline
 - Peak spectral period increases tenfold
- For the shallow reef, setup is proportional to bottom friction
 - Opposite pattern found with waves breaking up a constant slope
- Directionality plays a role in height and setup

Experimental Setup

- Experiments performed by Don Ward *et al* at ERDC
 - Performed in 48m by 27m basin
 - Directional wavemaker
 - □ Model scale 1:25
 - Two reef configurations
 - 0.37 m "deep" water depth, 0.06 cm reef depth
 - 0.43 m "deep" water depth, 0.12 reef depth
 - Bottom is smooth everywhere

□ Waves

- TMA spectrum unidirectional and 20 degree spread
- Wave height 0.12 m
- Peak period of 2s and 3s

Experimental Setup

Significant Wave Height Comparison

Unidirectional Waves

- Shelf depth=0.06 m, T_p=3s
 - Spectral peak period shifts from 3s (incident) [15s prototype] to ~45s (end of reef) [3.8 min prototype]
 - Mean period from zero-crossing at end of reef =3s
 - Long period motion matches the fundamental resonance frequency of the shelf

□ Wavelength of 45s period on shelf ~38m

Unidirectional Waves

- Shelf depth=0.06 m, T_p=3s
 - \Box H_{mo} at the end of the reef = 5.2 cm
 - H_{mo}/h=0.85
 - H_{mo}/(h+setup)=0.72
 - \Box H_s from zero-crossing at end of reef = 4.1 cm
 - H_s/h=0.67
 - H_s/(h+setup)=0.57
 - \Box H_{mo} at the end of reef, if beach is replaced by a 100% absorbing boundary = 2.8 cm
 - H_{mo}/h=0.47
 - H_{mo}/(h+setup)=0.45
 - Similar #'s from zero-crossing

Unidirectional Waves - Friction

$$\frac{\partial u_1}{\partial t} + \frac{\varepsilon_o}{2} \nabla \left(u_1 \cdot u_1 \right) + \nabla \zeta + \mu_1^2 \{ \dots \} - R_b + R_f = 0$$

Bottom friction with a quadratic drag law

Breaking dissipation, *R_b*, following Kennedy *et al.* (2000)

$$\nu = B\delta^2 H \zeta_t$$

- Use Mannings friction: $f = \frac{8gn^2}{H_{total}^{0.333}}$
- For reference with models using friction factors that do not carry the 8 in the numerator above, multiply the friction factors here by 2.8 for an equivalent value

Unidirectional Waves - Friction Waves breaking on a constant slope

Unidirectional Waves - Friction Waves breaking on a constant slope

Directional Waves Shelf depth=0.06 m, T_p=3s

Significant Wave Height Comparison

Unidirectional vs Directional

- Shelf resonance not as significant in the directional cases
 - □H_{mo}'s at the end of the reef are less with directional sea, by 5%-25%
 - □Setup at the end of the reef is greater with directional sea, by ~0-10%
- In the experiments (and simulations) directionality is "squished" by the side walls and the formation of mach stems

Conclusions

- If not interested in vertical and turbulent detail of the flow, Boussinesq provides equal accuracy to RANS
 - Wave height, water level, spectral transformation
- Shelf resonance is a dominant factor near the shoreline
 - Peak spectral period increases tenfold
- For the shallow reef, setup is proportional to bottom friction
 - Opposite pattern found with waves breaking up a constant slope