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INTRODUCTION

In october 2003 ECMWF introduced the first operational freak wave warning system,
which was based on a parametrization of the one-dimensional version of the
Benjamin-Feir Instability. Therefore, parameters such as maximum wave height
were, apart from the number of waves in the timeseries, only dependent on the
Benjamin-Feir Index (BFI), which is basically the ratio of wave steepness to the

width of the frequency spectrum. But effects of directional width are important as
well.

The programme of this talk is as follows:

� BRIEF REVIEW of THEORY

� SHORT and LARGE TIME KURTOSIS EVOLUTION Application of
narrow-band version of theory for fixed spectral shape

� MONTE CARLO SIMULATIONS of NLS Present Monte Carlo Simulations
and derive a simple parametrization for kurtosis as function of BFI and
directional width.
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� MAXIMUM WAVE HEIGHT Obtain from the pdf of the envelope the
expection value of maximum wave height and corresponding

maximum wave period .

� RESULTS and FIRST VALIDATION Validate average results against North
Sea Buoy data.

� CONCLUSIONS
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THEORY of NONLINEAR FOCUSSING

� Freak waves are examples of extreme, nonlinear ocean waves which may cause
considerable damage to large vessels.

� These extreme waves are generated by nonlinear focussing, a process that also
causes the Benjamin-Feir Instability.

Linear waves on the open ocean are independent and therefore the
Random Phase Approximation applies. This means that in a good approximation

ocean waves follow Gaussian statistics.

However, nonlinear interactions � correlated phases � deviations from Gaussian sea
state. The kurtosis (which measures deviations from the Normal distribution) can be
expressed in terms of the wave spectrum, and therefore for given sea state the
probability of occurrence of extreme events can be obtained. Theory has been
validated against Monte Carlo Simulations using the Zakharov Equation.

4 .



. Freak Waves in two dimensions .

−5.0 −3.0 −1.0 1.0 3.0 5.0
x/sqrt(m_0)

−12.0

−8.0

−4.0

0.0

lo
g(

pd
f)

Pdf of surface elevation
Zakharov Eq; BFI=1.4; n_modes=41

Gaussian
MCFW
Theory

Log of PDF for surface elevation (BFI=

��� �

). For reference the Gaussian distribution
is shown as well. Freak waves correspond to a normalized height of 4 or larger.

5 .



. Freak Waves in two dimensions .

Zakharov Equation

Start from a Hamiltonian description of ocean waves and write the surface elevation �

in terms of the action variable

� � 	�

� � �

,

�� �
� �

� 	
 

���

� ��� � � 	�
 ��� � � ��� 	�
 � "! # $&%(' $*) �
with

	�


the wave number and � � +, 


. Apply Krasitskii’s transformation,�� � �"- � - � �

, to remove the nonresonant, bound-wave contributions and then
Hamilton’s equations

. /- 0 / �� 12 0 1- �

become the well-known Zakharov equations334 - � � . � � - � � � . 5 � 	6
�87 97 : ; �7 � 7 97 : - �� - 9 - : 1 �< � �9 �:�

Note: time scale is

= � � 0?> � �
!!,where > is the wave steepness; Four-wave interactions!
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Stochastic Approach

In wave forecasting we are interested in predicting quantities such as the second
moment

@ �7 � � A - � - �� B �

where angle brackets denote an ensemble average. Following methods employed in
Statistical Mechanics (Liouville � Boltzmann) one obtains from the deterministic
Zakharov equation an equation for the action density

C
, where for a homogeneous

sea

@ �7 � � C � 1 � 	
 � � 	6
� � �

The equation for action density
C � 	ED� 	�
� � �

becomes:
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334 C : � � 5 � 	�
 �7 � 7 9 ;� �7 � 7 97 : 1 � 	�
 �� 	�
� � 	
 9 � 	�
 : �F # �G � � � �

H� C � C� � C 9� C : � � C 9 C : � C � � C� � �
where

G � � � � � � � � � 9 � � : . This evolution equation is usually called the
Boltzmann equation.

Note there are now two timescales implied by

F # �G � � � � � I JLK �G � � � 0G �

� short times:

M JLN 4O P F # �G � � � � � �
, hence

;RQ S � T � � 0?> � � P � , the
Benjamin-Feir timescale, corresponding to non-resonant interactions.

� large times:

M JN 4 O � F # �G � � � � � U 1 �G � �

, corresponding to resonant
wave-wave interactions, hence

; Q S � T � � 0?> : � P � (Hasselmann, 1962).
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Statistics

Nonlinear transfer gives rise to deviations from Normality which are most
conveniently expressed by means of the kurtosis

V : � A � : B 0W A �� B � � � �

The contribution to

V : because of dynamics becomes

V XZY[: � :\]_^ ]a` 5 � 	�
 �7 � 7 97 : ; �7 � 7 97 : 1 � < � �9 �: � � � � � � 9 � : � b ] H F c �G � � � � C � C� C 9 �

where

F c �G � � � � � � � de I �G � � �

G � �

The kurtosis is determined by both resonant and non-resonant interactions! However,
evaluation of the present form for the kurtosis is far too involved (it is more
complicated than the nonlinear transfer). So for operational evaluation
approximations are required.
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Approximate kurtosis

As a first step we considered the case of one-dimensional propagation. Then, for
Gaussian-shaped spectra in the narrow band approximation the kurtosis shows a
particularly simple form:

V : � f9 g 9 H @h i� �
hence the kurtosis depends on the square of the BF index. Here,

@h i� > + �
1kj �

where the steepness > � 
 P +l P and

1 j � m j 0 ��n is the relative width of the
frequency spectrum.

The one-dimensional case, including validation against lab observations, is discussed
by Mori at this meeting.

Next, consider extension to two dimensions.
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Extension to 2D

Introduce frequency spectrum

2 � � �

[

h � � C 0 , � 2 � 
h 0"o \] and include effects of
bound waves. Using the general result the kurtosis in the narrow band approximation
becomes:

V : � V pZqr: � s> � �

with

V pq r: � �> � � P �ut � �ut � � t 9 �v � �v � �v 9 F c �G � � � � w2 � w2 � w2 9 �

with

w2 � 2 � t � v � 0 l P the the normalized frequency direction spectrum,t � � � � �n � 0 � �6n 1�j �

and

v � �x � x n � 0 1zy . Here,

1 j and

1 y are the width of the
spectrum in the frequency direction and propagation direction respectively. In order
to measure
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the importance of the directional width we introduce the parameter

{� �
�

1� y1� j

and the frequency mismatch

G � becomes:

G � � 1� j � P | � t 9 � t � � � t 9 � t � � � { � v 9 � v � � � v 9 � v � �} � = � 1 9 � �

Finally, the resonance function

F c reads:

F c �G � � � � � � � de I �G � � �G � � (1)

The “general” case is very time consuming to solve, consider only special cases of
short times and large times.
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Short and large times

For short times one finds the general result

V : � ~� @h i� � � � { � �
where ~ is a dimensionless time.

Hence, when

{ A � � 1 y A + � 1 j �

we have focussing and positive kurtosis and
freak wave formation while for

{ B �
we have negative kurtosis.
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The large time limit is much more involved. Assuming that during that time the
spectrum has a Gaussian shape and does not change one finds:

V : � � � { � @h i� �
where

� � { � � �
� � U � �

� � {
{� { P �

with

{ P � W +W 0 � U 9 .
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Nonlinear Schrödinger simulations

However, the assumption that the spectrum does not change in time is not correct as
was found out by doing

� �� � � � �

simulations with the Nonlinear Schrödinger
Equation. In particular, when

{ B �

hence frequency width smaller than directional
width, there are due to the Benjamin-Feir Instability rapid changes (broadening in the
frequency direction) such that kurtosis flips from negative to positive . Next
viewgraph shows a plot of maximum of Kurtosis as function of BFI and

1 y

suggesting that the maximum is always positive.
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OPERATIONAL IMPLEMENTATION AND VERIFICATION

Dependence of kurtosis on BFI and directional width was parametrized and
implemented in a test version of the ECMWF wave forecasting system.

We use at the moment the following parametrization:

V : � � � � W �
1zy H UW +W @h i� �

therefore, finite directional width

1 y is seen to give a considerable reduction in
kurtosis

V : .
In addition, following Janssen and Onorato (2007), shallow water effects are
included as well.
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Maximum Waveheight

In addition, software was developed to determine maximum wave height and wave
period for given pdf of the surface elevation, which includes kurtosis effects.

Proceed as follows (see Mori and Janssen, 2006):

� Start from the pdf of surface elevation, which is the Gram-Charlier expansion,
i.e. pdf depends on skewness and kurtosis.

� Obtain the pdf of ’wave height’ defined as twice the envelope:

� �� � � �� �� � ��� �� � �� �� V : ��� � � � 

where

��� �� � � �� : � �� � � �

Note that because of symmetries the pdf of

�

does not contain skewness.
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� Maximum wave height distribution follows from

�^ �� ^ � ) � � C� � � � �� ^ � ) � Q �� � � � ^ � ) �
where

� �� � � 5 �� �� � � � �

is the exceedence probability of wave height, and

C

is the number of waves. In the continuum limit this becomes

�^ �� ^ � ) � � C � �� ^ � ) � H �� �� � C � �� ^ � ) � 

with

@� �� � � �� � �� � � � �

� Expectation value of maximum wave height follows from

�� ^ � ) � � �
P �� ^ � ) � ^ � ) �^ �� ^ � ) �

Note:

� ^ � )� h � V : � @h i � { � � C 
, where

C� � 0 ;n with

;n the peak period

Results of this system for one synoptic time are displayed in the next viewgraphs.
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KURTOSIS on 2007021000 STEP=00
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Validation

A systematic validation of this freak wave warning system against individual events
has not been performed so far. This will not be easy as one is bound to compare
apples with pears , as the freak wave warning system produces statements of a

statistical nature while individual events are just a random draw from a large
ensemble of possibilities.

� One case of interest is the La Réunion event, where observations of maximum
wave height where averaged over a 4 hour time interval.

� A comparison to check the statistical properties of the extreme wave system was
performed by a validation against 5 years of data at AUK which I got from G.
Burgers of KNMI.

A reasonable agreement between model and data is obtained.
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Slide
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��
��	�����
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������� ���	
A new parameter is being developed. Namely the maximum wave height

that can be expected within a certain time window (here 3 hours).
It will be introduced in operations soon.

New parameter: Maximum wave height on May 12, 18UTC
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CONCLUSIONS

� Presented the extension of the ECMWF freak wave warning system which will
be introduced operationally in the beginning of next year. Seems to give realistic
results.

� However, the determination of the kurtosis of the wave field is based on the
narrow-band approximation, which does not give a truthful description of what
happens when two or more nonlinear wave trains are present. In such a case
growthrates of the Benjamin-Feir instability are larger, giving larger deviations
from Normality. It is highly desirable to obtain a more general algorithm for the
kurtosis (say the equivalent of the Direct-Interaction Approximation).

� Validation of this approach in the field is evidently needed. Global satellite data,
such as from the Altimeter and the SAR, would be ideal. However, still a lot of
work is needed to extract extreme sea state information from these data.
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