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DEFINITION:

1Specification of time and space evolution of the
hurricane marine boundary layer wind field (and
surface stress) and sea level atmospheric
pressure field (for HD models only)
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Motivation

Explore response of ocean wave and surge models with
proven performance in tropical cyclone regimes to
alternative quality wind fields (we have come a long way
since SWAMP 1980, Chapter 6)

In storms well monitored by aircraft, radar, satellite and in-
situ data, (as in NATL) do alternative dynamical and
kinematic wind analysis methods exhibit significant
differences in specification of inner core wind intensity and
structure — study gives optimistic result vs other basins

What are critical remaining issues in specification of
atmospheric forcing for tropical cyclones

Set up this session!

Thanks Andy, Mark, Peter, Chris, Greg, Shuyi (And Tom)
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Methodology

Adapt OWI3G wave model and ADCIRC HD model to
Gulf of Mexico

Drive with five alternative high resolution wind fields of
Hurricane Katrina (2005) developed by dynamical,
kinematic and blended approaches

Compare envelope solutions of peak winds, waves and
coastal surge, assess skill and high frequency variability

Validate alternative wave hindcasts against
measurements at NDBC buoys

Talk up issues!
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Conclusions

All wind fields tested adequate for most practical
applications but critical issues remain for design criteria

Alternative reanalyzed wind fields exhibited greater
differences offshore than on the shelf

All methods suffer from lack of high quality in-situ measured
winds in cyclone inner core of intense.

One indirect estimate of surface wind (e.g. reduced aircraft
winds) is often used to tune transformation of another
indirect method (e.g. SFMR).

Where reconn data not available recent studies report
sophisticated uses of satellite data (Vis, IR, Active and
Passive Microwave) to estimate storm intensity and
structure in aid of all cyclone analysis methods (see paper).

Full 3D NWP forecasting models (e.g. WRF, MM5,GFDL....)
may emerge as soon powerful hindcasting (“reanalysis”)
tools but much more work needed.
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Approaches to Surface Wind Analysis

Parametric radial wind profile
e.g Myers-Malkin, HP, SLOSH, Holland, Cooper, Toro...

Dynamical approaches

Steady state: Chow(1971); Cardone, Greenwood and
Greenwood, (1978), Thompson & Cardone, 1996 (TC96);

Shapiro (1983), Vickery et al., 2000
Non-steady: GFDL, MM5, COAMPS, WRF....

Kinematic approaches

OWI IOKA: Cardone, Greenwood, Cox....
NHRD - HWnd Powell

Blend

e.g. assimilate HWnd into PBL solution using IOKA
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Maximum Wind Speed (m/s)
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Maximum Significant Wave Height (m)
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Time History of Wind and Wave Parameters

Srid

RealTime

Maxirnum Significant W
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Change in Wind/Wave Parameters

Height (m}
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Results for MMS Wind — “Best”
peak surge at coast within 5%

See Cardone and Cox (2007)
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WHAT ARE THE MAIN ISSUES

STEADY STATE PBL APPROACH

. physics —mainly surface roughness parameterization
. initialization — simple Holland type profile insufficient
. lack of in-situ measured data for calibration/validation

KINEMATIC APPROACHES

. transformation of wind data from moving sensors and
satellites into optimum Eulerian representation

. optimization of analysis spatial scale filter

. homogenization of archive over historical period of record

. lack of in-situ measured data for calibration/validation

3D MODELS (COUPLED OR UNCOUPLED)

. for hindcasts, constrain solution to move storm along correct track
. data assimilation

. can you have too much physics and resolution?

. lack of in-situ measured data for calibration/validation
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PBL - TC96 Based on Chow (1971) NYU MS

A moving Cartesian coordinate system (x, y) is now defined
such that its origin always coincides with the moving low cen-
ter of p.. In terms of the moving system, (6) is transformed
into

dv

—+ fR X (V = V)

C{a

1
= —— Vp. + V-(Ky,VV) — IV + V. J(V+ V)

p : ; (7

where \- = horlzontal wind velocity relative to the low center;
=V ¢ = effective geostrophic flow relative to the low

center; = — V,; and V_ = velocity of the moving reference
system relame to the fixed earth

= (E) + V-V
9t/

where (8/dt). = time derivative local to the moving coordinate
system

a

==+ V.V
at
Eq. (7) can be expanded from vector form into equations

involving the scalar components of horizontal velocity. After
some rearranging of terms, the equations to be solved are

where u, v = x- and y-components of V
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A particularly convenient form of the parameterization, first
proposed by Deardorff (1972) and updated by Arya (1977),
expresses the PBL fluxes in terms of layer-averaged mean PBL
properties. Parametric relations in this generalized theory may
be written in the form

B <t A =l (13, 14)
Uy Uy |f|

kg, — 8,) :
S e e €D (15)
0.

where i, © = vertically integrated [as in (8) and (9)] horizontal
wind components in the direction of the surface shear and
perpendicular to it, respectively; us = friction velocity; 6, =
mean layer virtual potential temperature at desired elevation;
Z, = z,/h, where z, is the roughness length; k = von Karman's
constant; 6, = potential temperature at z,; 6, = potential tem-
perature scale; A,, B,,, C, = universal functions of dimen-
sionless similarity parameters; and f/|f| = sign of f (+ or —).
The potential temperature scale is expressed in terms of the

heat flux as
By W (16)

o E
PCpUx

where ¢, = specific heat of air at constant pressure; and H =
heat flux. The presence of boundary layer turbulence due to
both shear and buoyancy leads to the Monin-Obukov length
scale L, expressed in terms of 6, and u, as

(17)
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TC96 Physics and Initialization

Parameterizations

Kh — horizontal eddy diffusivity
Kv - expressed in term of Cm — drag coefficient w/s/t to mean pbl Ws/wWd
Zo — deep water, shallow water

Am, Bm, Cm —from Arya/Deardoff mean layered PBL parameterization

Initialization

Po central Vg ambient flow , uniform?

Rp scaleradius Vf  storm motion

B peakedness parameter azimuthal variability of B, Pfar

Pfar far field pressure temporal variability of Po, Rp, B, Pfar, H
H PBL depth stratification
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Fig.3a, 3c below from Powell et al. ( Nature, 2003)

Supporting evidence from more recent wind profile data (“top-down approach”) and
and “bottom-up” estimates of Jarosz et al. (Science, 2007)

Wave response: C10 cap already in OWI3G since 1992 and version of WAM4.5

used in the RSMAS NOPP program on hurricane forecasting (Graber et al,
2006)

But evidence that C10 decreases again >40 m/s and stress itself may be
ultimately capped?
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ISSUE: modeled inner core wind field for Cat 2or greater TCs very sensitive to
drag law
See Powell (2007) this session

SAMPLE RESULTS from TC96 FROM NUMERICAL EXPERIMENTS WITH C10 CAP

1969_03 (Camille) PBL VV1_0_3 (Cap of 2.2*10-3)
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ISSUE: Initialization of PBL

Many storms do not fit the simple single exponential representation of the
radial pressure field (SEE Cox and Cardone (2007 this session for more)
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ISSUE: mean “qrowth curve” of model depends critically on mean synoptic
climatoloqgical behavior of B — See Vickery (2007) this session

Plot below shows from library of HWnd snapshots produced for NHC between 1998
and 2006 peak snapshot wind speed peaks plotted versus Po in Katrina, Rita,
Dennis, Wilma and Po vs Vmax mean prediction of TC96 with simple inversely
modeled B (red line) vs polynomial fit to data points

HRD 2005 Analysis of Dennis, Katrina, Rita and Wilma
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ISSUE: lack of in-situ turbulence filtered Eulerian frame validation wind
data

Well initialized model solutions tend to agree with NDBC 10-meter discus buoy
winds in inner core, but not with 3-meter buoy winds in high sea states (effect
seems to kick in at HS>8 m and WS > 30 m/s) as exemplified below:

Left: Lili hindcast at 42001 Right: Ivan hindcast at 42040

Hurrican Ivan 2004 Hindcast

MMS Lili Hindcast ~ Hinccast 5 Hindcast Winds and Waves vs. Buoy 42040
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ISSUE: how to get high quality in-situ Eulerian winds in inner core

KORDI TOWER — Korea

WIND FARM TOWER
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NDBC — Back to 10-Discus

TOP OF DRILLING DERRICK (Image courtesy NDBC)
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http://www.ndbc.noaa.gov/images/stations/42001.jpg

KINEMATIC APPROACH: NOAA NHRD HWnd
(Powell et al, 1998)
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ISSUE: Aircraft flight level winds and GPS dropwindsonde are moving point
sensors and conversion to peak 1-minute sustained wind is problematic
GPS Drops Mean Profiles
Franklin et al. (2003)

Eyewall
(N==215)

Outer Vortex
(N>=124)

TABLE 2. Recommended operational wind adjustment factors for

adjusting reconnaissance flight-level winds to the surface. for the
hurricane-eyewall and outer-vortex regions.
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Quter vortex
(not in
convection)

Outer vortex

Flight level Eyewall (convection)
700 hPa 0.90 0.85 0.80
850 hPa 0.80 0.80 0.75
925 hPa 0.75 0.75 0.75
1000 ft (305 m) 0.80 0.80 0.80

——Ll L

L
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Mormalized Wind Speed
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FiG. 8. Mean hurricane wind speed profiles for the eyewall and
outer-vortex regions. Wind speeds are averaged and expressed as a

fraction of the profile wind speed at 700 hPa. The minimum number
of profiles used to construct the averages is also indicated.
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FRANKLIN ET AL.

Mean Profiles for | SN
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FiG. 1. M yewall wind speed profiles for individual hurricanes. All winds are averaged
and ar as a percentage of the profile 700-hPa wind speed. The number of soundings
used to construcl the mean profile for each storm is given in parentheses in the figure legend.
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ISSUE: SEFMR is a moving point area-average wind remote sensor and GMF and
conversion to peak 1-minute sustained wind is problematic
SEE Cox and Cardone (2007) and Powell (2007) this session

Hurricane Floyd

2046-2146 UTC 13 SEFP 99 2300 UTC

Center at 24.27 ° N, 73.50 ° W I

Wind Speed (m s-)

Rain Rate (mm h-1)

VA

=

73

Longitude (©)

Image courtesy of HRD
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http://www.aoml.noaa.gov/hrd/floyd_sfmr.html

ISSUE: Wind speed transformations have evolved over time; historical
archive of HWnd analyses do not form a homogeneous historical database

Hurricane Katrina Data from NOAA HRD
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Image courtesy Jeff Hanson
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3 D NWP MODELS -WRF, GFDL, WRF

« |ISSUE: Normally used in predictive mode mainly to forecast storm track and
general intensity. Relaxation of steady state, hydrostatic assumption, very high
resolution and coupling with sea surface produces interesting and detailed
solutions — but are they realistic — see below from Corbiosco et al. (2007)

e SEE: Chen (2007), Davis and Holland (2007), Knutson (2007) this session.

Katrina 1.33 km WRF

900 hPa wind speed
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Way Forward As We See It

1. Stabilize PBL and Kinematic methods, develop an assimilative 3D model
analysis approach and apply to “Reanalysis”

2. Fully rescue, process to digital form and homogenous historical met data,

apply new toolbox for PBL initialization and validation of Kinema and
homogenized HWnd with that database to all late 19t" and 20t century storms

3. Build a library of NATL and WPAC TC surface wind and pressure fields

to replace HURDAT and JTWC for use in hindcast, deductive, JPM, synthetic
storm etc approaches to development of design criteria and coastal hazard

mapping
3. The library will serve to guide application of coupled 3D models to reanalysis

4. Too bad all of the above not available yet for the fine emergency post Katrina

hazard assessment studies reported here, but together with ocean response
physics advances and climate variability:

THESE STUDIES SHOULD BE REPEATED AT REGULAR INTERVALS!
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welos
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