

Probabilistic design of levee and floodwall heights for the Hurricane Protection System in the New Orleans area

Mathijs van Ledden (Haskoning Inc.), Pat Lynett (Texas A&M), Don Resio (ERDC) and Nancy Powell (USACE)

Probabilistic design of levee and floodwall heights for the Hurricane Protection System in the New Orleans area

Mathijs van Ledden (Haskoning Inc.), Pat Lynett (Texas A&M), Don Resio (ERDC) and Nancy Powell (USACE)

Motivation

Current FEMA certification guideline:

"the levee height at the coast should be equal to the 1% water level plus the 1% wave height or the maximum <u>runup</u> whichever is greater plus <u>1ft of</u> <u>freeboard</u>"

- US Army Corps guidance includes a minimum 90% assurance for providing 1% level of protection
- IPET stresses the importance of risk and uncertainties in design of flood defences

Traditionally: deterministic approach

Now: probabilistic approach

- Defining probability functions for inputs
- Processing multiple combinations of inputs
- Assessing uncertainty in outputs

Summary of conclusions

Design approach including uncertainties explicitly

More robust system design ("the higher the local uncertainty, the more freeboard is included")

More insight in magnitude of nearshore waves and its uncertainties

Hurricane Protection System

Details:

Flood protection system with 350 miles of levees, floodwalls and structures

Protecting 24% of the people of Louisiana with 460,000 households and 26,000 businesses (2000)

Objective is a 1% protection level in 2011 (i.e. expected exceedance of 50% if you live 75 years in this area!)

Current guideline

Current FEMA certification guideline:

"the levee height at the coast should be equal to the 1% water level plus the 1% wave height or the maximum <u>runup</u> whichever is greater plus <u>1ft of</u> <u>freeboard</u>"

- Definition maximum runup? 2% wave runup?
- Application for flood walls?
- Freeboard concept? +1ft enough?

New design criterion

Overtopping rate (or better: inner slope velocity) governs inner slope erosion

Literature review of Hughes (2007) suggests that 0.1 cfs per ft can be allowed on wellmainated grass-covered levees

Current design criteria:

- 0.01 cfs per ft with 50% confidence
- 0.1 cfs per ft with 90% confidence

Need for more experimental validation

EU COMCOAST experiments

Probabilistic method (1)

Empirical model: Van der Meer formulations

Input:

- Mean values hydraulic parameters (water level, wave characteristics) and empirical coefficients
- Standard deviations (based on models/experts)
- Distribution types (normal distributions)

Probabilistic method (2)

Proces: N evaluations with different input combinations

Idealized levee section:

Test 1: Required simulations

US Army

Corps of Engineers 7400 Leake Ave. New Orleans District

Test 2: Correlation

Situation	Overtopping		Design	Correlation		
	rate (cfs per ft)		height			
	50%	90%	(ft)	Water level	Wave height	Peak period
	value	value		ζ	H _s	\overline{T}_{p}
1. Base case	0.007	0.078	17.0	No	Yes	Yes
(partial correlation)					$(T_p only)$	(H _s only)
2. Full correlation	0.004	0.090	18.0	Yes	Yes	Yes
				$(H_s and T_p)$	$(\zeta \text{ and } T_p)$	$(\zeta \text{ and } H_s)$
3. Partial correlation	0.008	0.090	17.0	Yes	Yes	No
				(H _s only)	(ζ only)	
4. Partial correlation	0.005	0.084	17.5	Yes	No	Yes
				(T _p only)		$(\zeta \text{ only})$
5. No correlation	0.007	0.063	17.0	No	No	No

- Different combinations of "error correlation"
- Full correlation between errors of all variables is unlikely
- Effect of correlation is small on final design height

Test 3: Comparison with FEMA guideline

Slope	Situat	ion with wave l	berm	Situation without wave berm			
		$(\gamma_{\rm b} = 0.6)$		$(\gamma_{\rm b} = 1.0)$			
	FEMA	Probabilistic	Probabilistic	FEMA	Probabilistic	Probabilistic	
	guideline	method	method	guideline	method	method	
		(Set 1)	(Set 2)		(Set 1)	(Set 2)	
1/3	22.0	18.5	22.5	23.5	20.0	24.0	
1/4	19.5	17.0	20.0	23.0	19.5	23.5	
1/5	17.5	16.0	18.0	22.0	19.0	22.5	
1/6	16.5	15.0	17.0	20.5	18.0	21.0	
1/7	16.0	14.5	16.5	19.0	17.0	19.5	

Set 1 overtopping criteria are current values; set 2 is 10 times lower for both 50% and 90%;

FEMA guideline results in design heights comparable with probabilistic method (set 2)

Suggestions for further work

Nearshore wave modeling and overtopping experiments

Choices of error magnitudes/distributions have to be further validated

Inclusion of other load variables but also the strength for a full risk-based approach

Summary of conclusions

- Probabilistic method for hydraulic levee design
- More robust system design ("the higher the local uncertainty, the more freeboard is included")
- More insight in magnitude of nearshore waves and its uncertainties
- Rest of levee/floodwall design world has to be educated how to use this information

Thank you for your attention

www.royalhaskoning.com