The MSC Beaufort Wind and Wave Reanalysis

Val Swail Environment Canada

Vincent Cardone, Brian Callahan, Mike Ferguson, Dan Gummer and Andrew Cox Oceanweather Inc. Cos Cob, CT, USA

Introduction: History of Studies leading up to the MSC-B

- •Murray and Maes (1986) extreme wave climate review of 100-year wave 4-16 m
- •1990-92: PERD hindcast of 30 severe storms for Canadian Beaufort using 2-G wave model over period 1957-88; 100-year waves varied from 2m near shore to 6m offshore; also included sensitivity to alternative probabilistic ice cover
- •1993: PERD update to include 29 storms in Canadian Beaufort as possible erosion producing storms
- •1993-2005: dormant period in Beaufort Sea interest
- •2005-07: interest in continuous hindcast of 20+ years this study

Introduction: Purpose of MSC-B

•Apply the same methodology used in the MSC50 NA hindcast to the Canadian Beaufort Sea to produce a high-quality climatology

•"Continuous" multi-decadal hindcast for both operating and extreme metocean statistics

Increase resolution of Beaufort basin model

Increase temporal resolution of archive

•Increase accuracy to reduce uncertainty on any climate or design data statistics

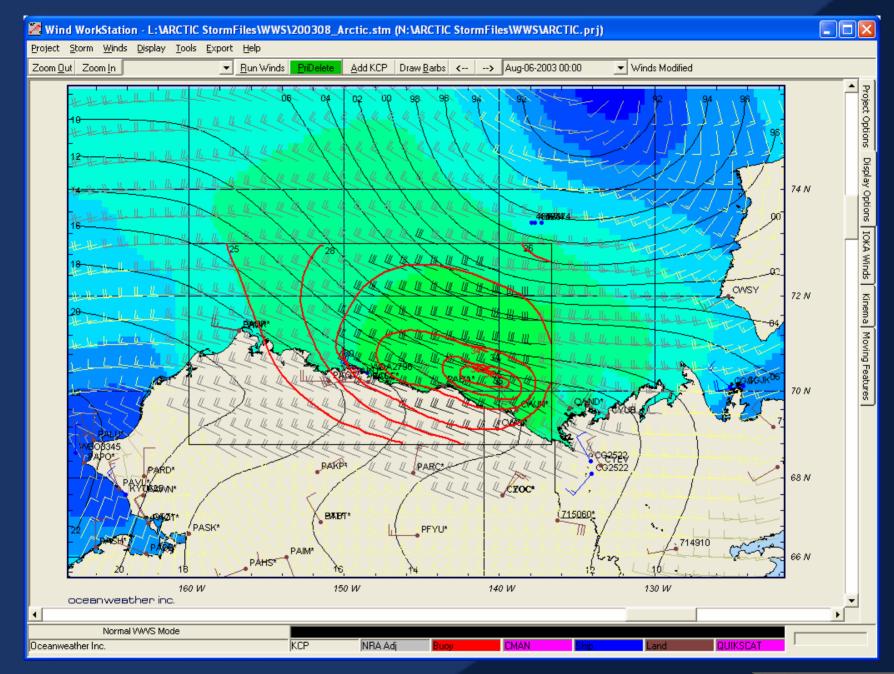
•Wind and wave databases and Beaufort Sea Atlas online

Challenges

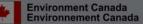
- Scarcity of in situ meteorological data
- Almost total absence of transient ship and moored weather buoy reports
- Highly variable and complex nature of sea ice cover
- Reanalysis wind fields considerably less accurate in Arctic
- Limited satellite products available even in recent years due to latitude of study area

Wind Field Methodology

- OWI Interactive Objective Kinematic Analysis still the basis for hindcast wind fields
 - QuikSCAT to correct systematic errors in NRA winds
 - adjust coastal wind measurements to effective over-water exposure using station-dependent overwater/overland transformation ratios
 - Import marine and adjusted coastal winds into WWS with adjusted winds from transient ships
 - Apply IOKA to storm periods

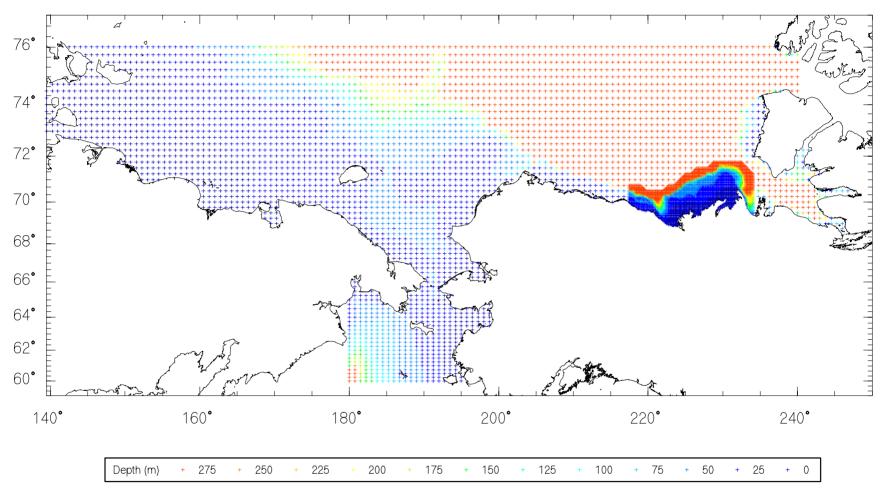

QuikSCAT/NRA Wind Correlations

- SCAT and NRA data matched for all NRA grid boxes in the Beaufort Sea fewer than 500 comparisons per box
- NRA 6-hourly winds linearly interpolated to nearest hour of satellite observation
- Direction stratifications are 90 degree segments based on NRA direction starting with 45-135, and all directions
- Standard difference statistics and Q-Q distributions computed
- If Q-Q linear then a simple correction algorithm is applied for speed; direction adjusted by mean difference
- Result: NRA winds biased low, especially for south and east winds, so were increased

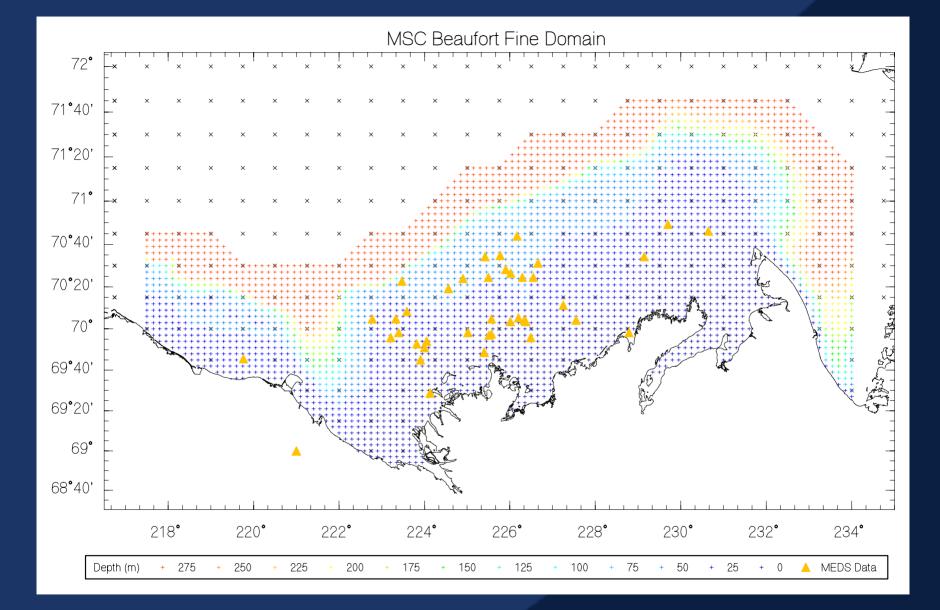

B2 *	dude	Ro» I	Edgen	9 - 8 1 1	12. 8 5%	5-6	4.76 -	- 86.	685 -	68.	57 - 3	70,47	5-7	2.349	- 74	285	- 76,	.19-	79.0	9-7	9,995)- B	I.9		NC	EP	Grid
	-																										
													142														
	17280 -	142	17282	142	17264	142	17286	142	17288	142	17290	142	17292	142	17284	142	17285	142	172168	142	17300	142	17302	142	17904	142	17508
B0*	-			¦																							
	- 	17086	142	17090	142	17092	142	17094	142	I TOPE	142	17098	142	17109	142	17102	142	17 104	142	17108	147	17108	142	1711¢	142	17112	142
	- - -	142	17089	142	17091	142	17:69	142	17089	142	17007	142	17066	142	17101	112	17109	142	17185	142	יסו ד ו	142	17109	142	1711	142	17 19 -
78 *																											
													142														
	-									142																J	
76 *	-	187422	140)පොහ	140	18708	146	18709	140	1 BT 10	140	187 12	140	18714	140	18718	140	18718	(148	18790	140	18722	199)सम्बद्ध	(124	Z	1287
	-+ 1670) -	+ 140	16703	140	+ 18729	140	+ המיסוו	+	10709	140	-+ 18711	140	וידם ווידם	140	15715	140	18717	TAD	פו לסו.	140	10771	121	+ 16723	123	10725	129	+ - 5220 - 1
74 *	-	18505	102	186511		16519	186	185 5	108	186517	110	185.19	199	16521	1994	18523	199	16525	199	ICEST	194	18529	118	18531	5		
																									ť		
72 *													76														
	16315 	84 	יופאן 169יד	66	18918		18571	2	16323	72 7	18325	74 5.2	18527	78	16328	19 	18991 	eic	18953	62	16335	ві 	16397	68	18359		18541
70 *	L+ '	· +	32 18124												~	۰	34 181 -9 6	18138 ∔ 95	98 #149	1611 1 37	, A	Z	$\langle \rangle$		1,39 (-39) (1914)		40 - + - 18178
68 °		1993		[~~	1	æ							
	-+ 1-26-29			4	k ~~																						:
66 °	- 1Ω +β 127/380	1573) + +	5		\$A-																						عياعياء
64 *		. +	9	. +	3																Grid	Por	ni Ni	 ۱۳۵6	 7 ns (dig	
~~•			100																				•	•	5 1-1		
62*		1	95'	•	20	10"		205	•	2	10		21	5•		22{)•	2	25	,	23	80 °		23	5	2	40 °

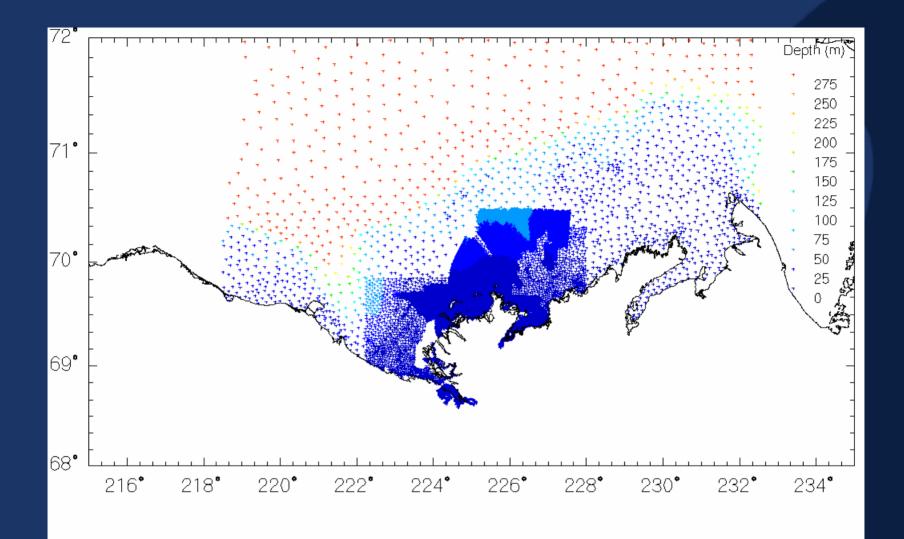
25 years of wind/wave modeling expertise

oceanweather inc.



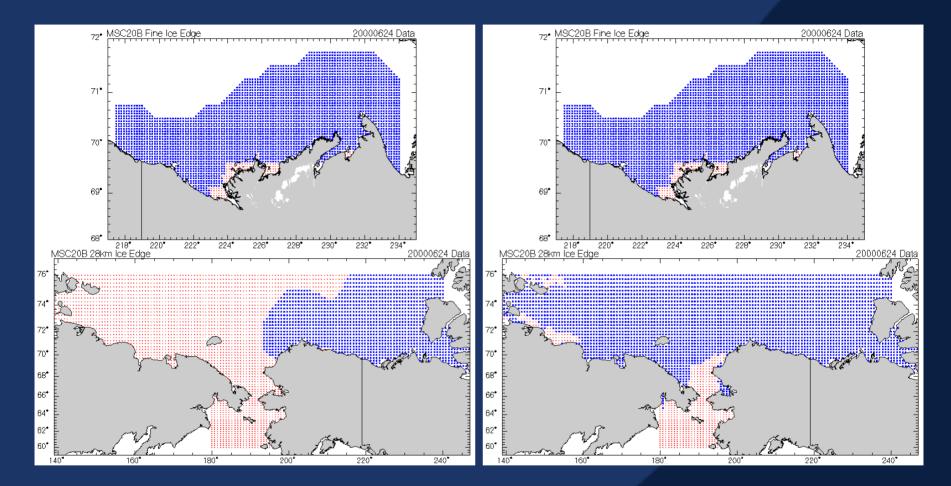
Wave Modelling Methodology


- OWI 3-G shallow water model
 - 28 km coarse grid; nested 5 km fine mesh
 - 3442 active grid points
 - Boundary spectra from OWI GROW hindcast
- Bathymetry
 - GEBCO 2003 1 minute data
 - CHS data for fine mesh area
 - Little smoothing required


MSC Beaufort Coarse and Fine Domain

Depth measurements provided by CHS for use in the Beaufort wave model

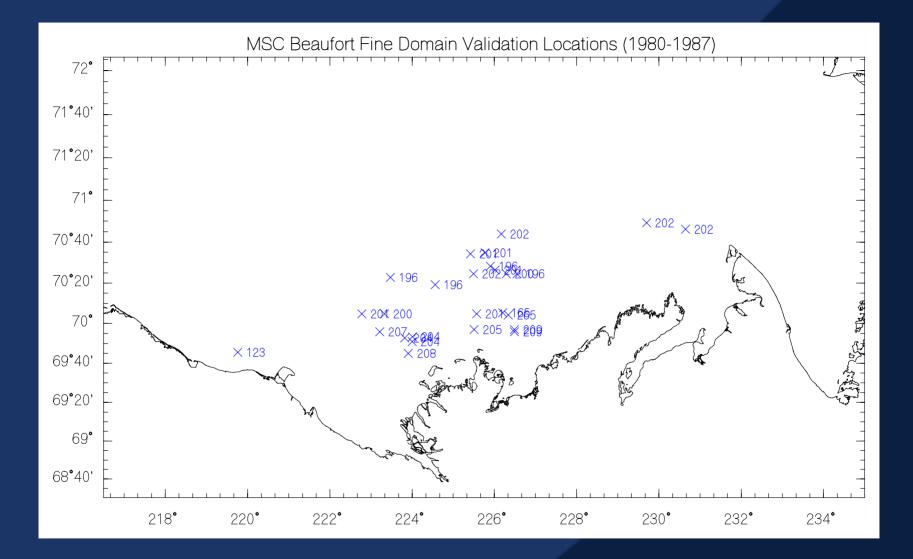
Ice Edge

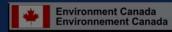

- In the wave model grid point locations with > 50% ice concentration are considered as land, with no wave generation or propagation
- Ice edge updated on weekly basis
- In Canadian waters CIS high resolution ice data set used
- Other areas GFSC/DMSP ice data used, with blending since CIS data did not cover the entire 28 km model domain

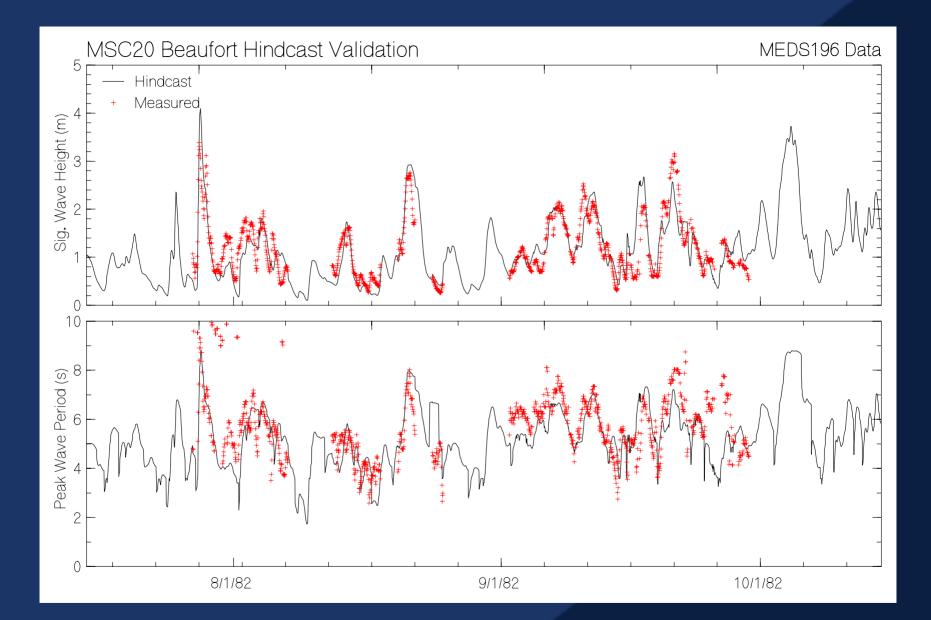
Ice concentration data sources

Source	Frequency	Coverage	Date Range
GFSC	Daily	Full	Nov1978- Dec 2000
DMSP	Daily	Full	Jan 2001- Present
CIS NetCDF	Weekly	Canadian Waters	Jan 1971- Present

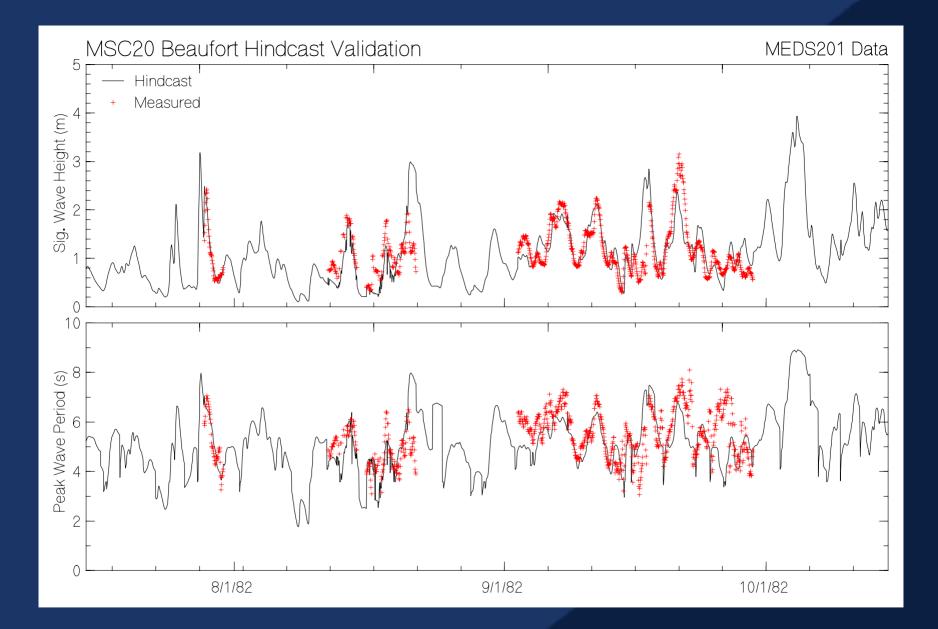


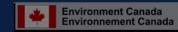

Comparison of weekly ice edge (blue represents greater than 50% concentration) valid June-24-2000 from the Canadian Ice Service (left) and final blended ice edge (right) from multiple ice data sources on the MSC Beaufort coarse and fine model domain

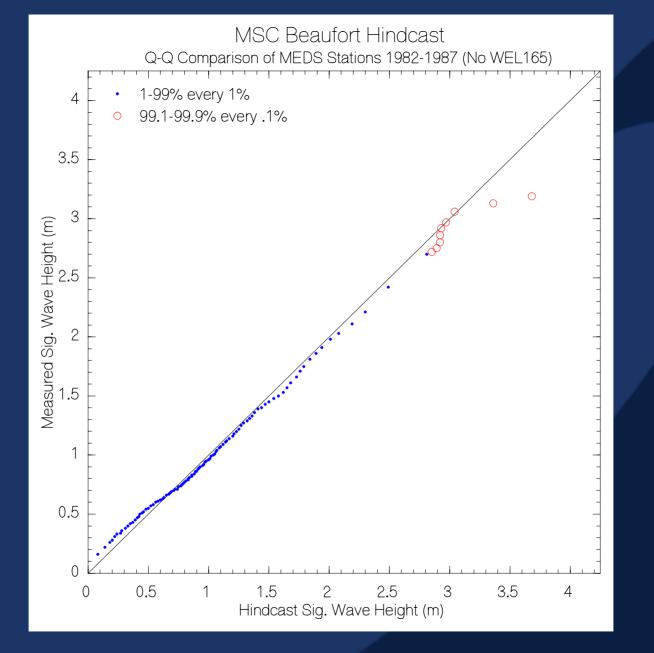


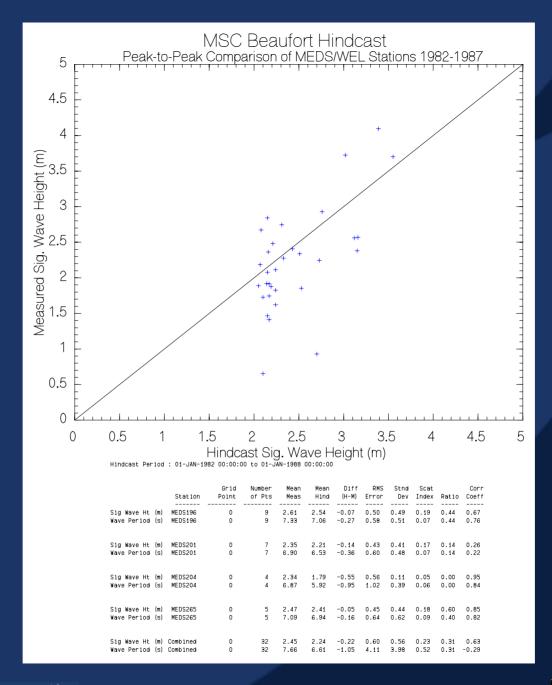

Validation

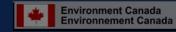
- MEDS 12 buoys, 26 deployments in ice-free period over 1981-86
- Additional months hindcast in this period using same methodology since no in situ data in study period
- Water depths 11 to 71 m
- SI 42%, larger than MSC50 due to larger uncertainty in wind fields and low mean measurement (0.99 m)
- Q-Q plots show good agreement > 99th
- Peak-to-peak showed hindcast low bias of 22 cm and SI 23%

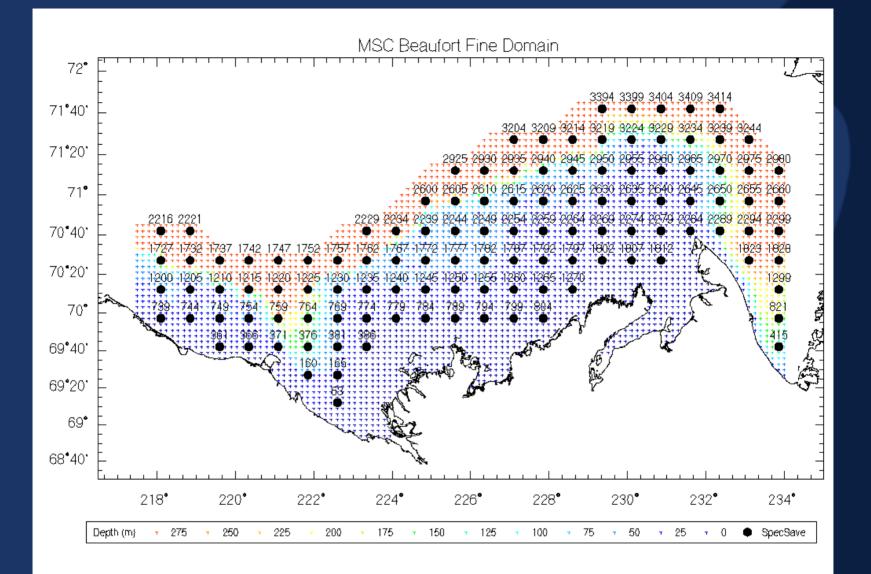








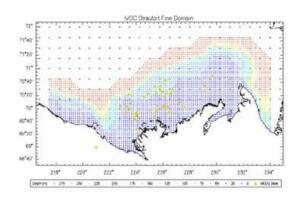

25 years of wind/wave modeling expertise


oceanweather inc.

Hindcast Products

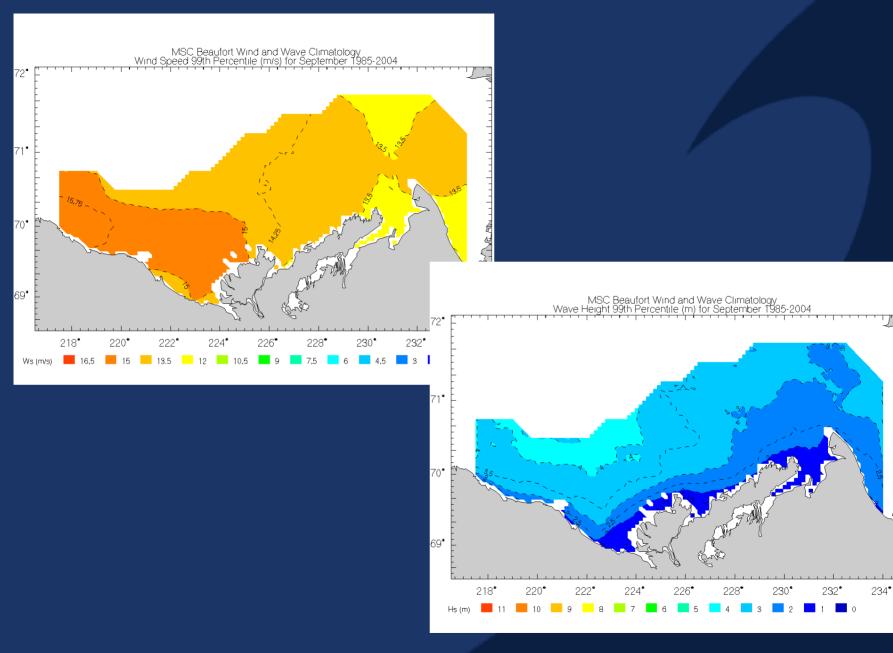
- Hourly archive 1985-2005 at all grid points in fine mesh (to be extended to Canadian domain)
- Wave spectra at selected fine mesh points
- Beaufort sea wave atlas on DVD (to be online)
 - Mean, sd, %ile, exceedance, anomaly
 - Individual and collective months, years
 - Extremal analysis at each grid point

Beaufort wind and wave archive (colored by depth) and wave spectra (black) locations

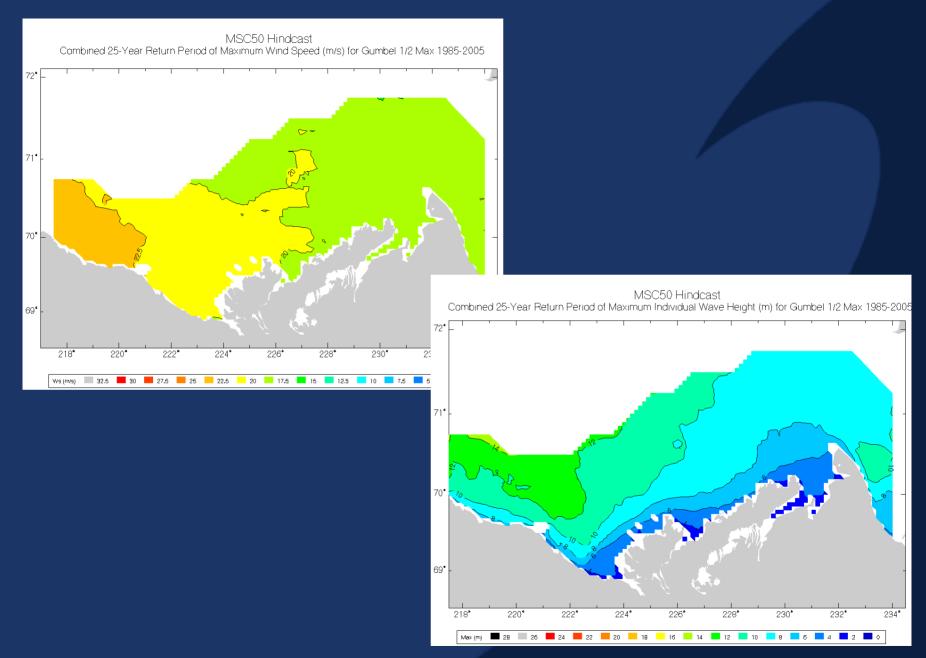


MSC

Beaufort Wind and Wave Climatology


A 21-year continuous wind and wave hindcast

covering the period 1985-2005.


Ice Plots Weekly/Monthly ice data provided by the Canadian Ice Service	Validation Comparison with MEDS buoys	Wave Atlas Graphics and data analysis based on the wind and wave climatology
Wind and Wave Fields Synoptic sort (1-month, all points per file, gzipped) <u>17 Archived Wind and Wave Fields</u> Description	MGC Beautor Wind and Wave Clinicitoopy Men Wave Theory for 150 194 70 70 70 70 70 70 70 70 70 70 70 70 70	Wave Spectra Archive 117 Archive Locations - gzipped by point <u>Gif Image/CSV File</u> of Archive Locations <u>Spectra Description</u>
Wind and Wave Timeseries Time sort (1 file per grid point, gzipped) <u>17 Archived Wind and Wave Fields</u> Description	OSMOSIS Requires OSMOSIS be installed on your PC	Extremes Gumbel and Weibull extremes computed by point

() VEW

Summary And Future Work

• MSC-B provides a new high resolution wind and wave hindcast at higher temporal and spatial resolution than previous efforts: 21-year "continuous" hindcast with good agreement with measurements

- Extend hindcast to 40 years (1971-2010)
- Extend validation using earlier in situ data and recent altimeter data
- Investigate combined wind, wave, storm surge modelling for Canadian Beaufort
- Concerns involve wind field, bathymetry and land surface elevation data, sufficient high-quality validation data for wave and water levels
- Investigate use of SAR wind products for small scale variability close to coast
- Investigate similar efforts from USACE in US Beaufort

THE BEAUFORT SEA AFTER CLIMATE CHANGE?

