Wave Transformation Modeling with *Bottom Friction* Applied to the Southeast Oahu Reefs

Mary A. Cialone and Jane McKee Smith

- Objective
- Study Area

- Model Validation
- Summary

Objective

RSM Program Goal

An integrated approach of coastal, estuary, and river sediments on a regional scale in the planning and maintenance of water resource projects to achieve balanced and sustainable systems.

POH Goal

Develop an understanding of longshore sediment transport potential in the region and determine the likelihood of accretional/erosional areas within the project domain

ERDC/CHL Goal

To provide POH with a tool for understanding nearshore circulation in the study area

ERDC/CHL Task

Nearshore circulation and wave transformation modeling

ERDC/CHL Technical Tasks

- Data collection/assessment
- Finite element and finite difference grid development
- Development of model forcing conditions
- Bottom friction formulation
- Model simulations
- Model validation
- Simulation analysis

Final product: validated hydrodynamic and wave models for the project site

Outline

Objective

Study Area/Problem Areas

- Model Validation
- Summary

The Study Area

Bellows Air Force Station

Lanikai Beach looking north

Lanikai Beach looking south

Lanikai Beach

Ka'elepulu stream looking makai

Ka'elepulu stream looking mauka

Ka'elepulu Stream

Extensive Reef

- Objective
- Study Area

- Model Validation
- Summary

Steady-state spectral wave model

- Conservation of wave action
- Simplified diffraction
- Wave growth and white-capping
 - Wind input
 - Nonlinear transfers to low frequencies
 - Dissipation at high frequencies
- Depth and steepness-induced breaking
- Refraction and shoaling
- Wave-current interaction
- Bottom friction

Wave height, direction, period (bulk parameters and spectra), radiation stresses

JONSWAP friction formulation

spectral energy loss from bottom friction

- friction coefficient
- angular frequency
- $k^{\text{and}} d$: wave number and water depth

 S_{bf}

wave energy density function (divided by $(
ho_w g)$,

wave frequency and wave direction

(Hasselmann et al. 1973, Padilla-Hernandez and Monbaliu 2001)

Manning friction formulation

- spectral energy loss from bottom friction
- friction coefficient
 - angular frequency
 - wave number and water depth

- $E(f,\alpha)$: wave energy density function (divided by $(\rho_w g)$, (f,α)
 - wave frequency and wave direction

n

 $k^{\text{and}} d$

root-mean-square bottom velocity

Holthuijsen (2007)

Offshore Wave Climate CDIP Buoy Station 098 (2000-2004)

Initially discretized into 134 wave conditions

Significant Wave Height M	Wave Period sec	Wave Direction deg from North	
	6	-22.5	
0.75	8		
1.25	10	0	
	12		
1.75	14	22.5	
	16		
2.25		45	
2.75		22.5 45 67.5	
3.50		90	

STWAVE Domain

Depth m, MTL 50.0 47.5

45.0 42.5

40.0 37.5

35.0 32.5

32.5 30.0 27.5 25.0 22.5 20.0

17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0

- Objective
- Study Area

- Model Validation
- Summary

Field Data Collection

Model Performance Index $MPI = 1 - Error_{rms}/Changes_{rms}$ $\underline{\text{Error}_{\text{rms}}} = \sqrt{\frac{1}{N}} \sum_{i=1}^{N} (\text{Model-Data})^2$ 222 224 226 228 230 232 234 236 238 240 242 24 Julian Day, 2005 Model Performance Index: 0.94 Changes_{rms} = $\sqrt{\frac{1}{N}} \sum_{n=1}^{N} (\text{Off-Data})^2$ 0.0 222 224 226 228 230 232 234 236 238 240 242 24

Julian Day, 2005

Model Performance Index Manning

	n 0.20	n 0.20 with tide
ADV1	0.945	0.948
ADV2	0.922	0.926
ADV3	0.953	0.960

Model Performance Index JONSWAP

	С _f 0.05	${\cal C}_{f}$ 0.05 with tide
ADV1	0.931	0.940
ADV2	0.892	0.895
ADV3	0.897	0.907

JONSWAP

ADCP1 DV1

Wailea Point

ADV2

Makulua Island

Waimanalo Bay

ADCF

ADV3

1.0

0.5

0.0

.

MPI 0.948 - 0.970

man Manana Mara 222 224 226 228 230 232 234 236 238 240 242 24 Julian Day, 2005

- Objective
- Study Area

- Model Validation
- Summary

Summary

- Bottom friction implemented
 in STWAVE
- Applied range of JONSWAP and Manning friction coefficients
- Validated to 2005 field data
- Included tidal fluctuation

- STWAVE with bottom friction captures the large reduction in wave height from the offshore to the nearshore
- An attempt at simulating the variability in reef condition was made by varying the friction coefficient in patches
- Model Performance Index values of ~0.95 indicate the model is capturing wave transformation/dissipation over the reef

Questions?

