Dissipation due to Vegetation in Nearshore Wave Models

Jane McKee Smith

US Army Engineer Research and Development Center, Coastal and Hydraulic Laboratory

Alison Sleath Grzegorzewski US Army Corps of Engineers, New Orleans District

Motivation

- Estimate importance of wave attenuation by wetlands
- Determine if models can replicated it

Description

- Bottom friction in STWAVE
- South Louisiana simulations
- Calibration with lab and field data
- Open questions...

Summary

- Friction values must be function of vegetation height relative to water depth
- Much more validation data is needed
 - Large scale
 - Large events
- Present formulation is reasonable for the state of knowledge

• To use vegetation for coastal protection, much more knowledge is needed

Bottom Friction in STWAVE

Holthuijsen (2007) with Manning n

$$S_{bf} = \frac{-1}{g} \left(\frac{gn^2}{d^{1/3}} \right) \frac{\sigma^2}{\sinh^2 kd} E(f, \alpha) u_{rms}$$

 n values are spatially variable, but temporally constant

- + W - share with make

New Orleans & SE Louisiana

Mississippi Sound

Lake Pontchartrain

> Orleans New Orleans

Lake Borgne

St. Bernard

East

Plaquemines

Caernarvon Marsh Biloxi Marsh

> Breton Sound

> > Chandeluer Islands

Manning n values

0.20 0.19 0.18

Manning n Values

Wave Height Difference (m)

No Friction - Friction Hurricane Katrina

Percent Wave Height Difference			No Friction – Friction	
	100.0		Hurricane Katrina	
	90.0			
	80.0			
	70.0			
	60.0			
	50.0			
	40.0			
	30.0			
	20.0			
	10.0			
	0.0			

Wave Height Difference (m)

No Friction – Double Friction Hurricane Katrina

2.20

Wave Height Difference (m)

No Friction – Half Friction Hurricane Katrina

Lake Borgne Measurements

- Measure wave attenuation across wetlands
 - Five non-directional wave/water level gauges
 - Anemometer
 - Characterization of wetland (elevation, plant type, plant density, plant height, ...)

Lake Borgne Field Site

Lake Pontchartrain

New Orleans

Lake Borgne

Biloxi Marsh

Measurement Site

Lake Borgne Deployment

Inner gauges ~300-600 m from lake

Existing Data Sets

- Knutson et al. 1982
 - Spartina alterniflora, field, individual waves, I/d ~ 0.75 1

Fonseca & Cahalan 1992

- Four plants, lab, individual regular waves, l/d ~ 1
- Dubi & Torum 1996
 - Kelp, lab, regular & irregular waves, l/d ~ 0.3

• Lovas 2000

- Kelp, lab, irregular waves, l/d ~ 0.2-0.3
- Wallace & Cox 2000
 - Posidonia Australis, lab, regular waves, l/d ~ 0.8-1.0

Spartina Alterniflora

Posidonia Australis

US Army Corps of Engineers

Laminaria Hyperborea

Knutson et al. Data

Knutson et al. Data

Dubi Data

Summary of Data/Validation

• Knutson et al. 1982

- Spartina alterniflora, field, individual waves, I/d ~ 0.75 1
- n = 0.3 (average), 0.22 (for larger waves)

Fonseca & Cahalan 1992

- Four plants, lab, individual regular waves, l/d ~ 1
- n = 0.2-0.6, 40% decay in 1 m (density & species independent)

• Dubi & Torum 1996

- Kelp, lab, regular & irregular waves, l/d ~ 0.3
- n = 0.22, 15% reduction in n for irregular v. regular waves

Lovas 2000

- Kelp, lab, irregular waves, l/d ~ 0.2-0.3
- n = 0.18, showed dependence of n on plant density

Wallace & Cox 2000

- Posidonia Australis, lab, regular waves, I/d ~ 0.8-1.0
- n = 0.18

Summary

- Biloxi Marsh
 - n = 0.04-0.06 (consistent w/ Chow & ADCIRC)
 - Modeled maximum wave heights reduced
 1.5 m by friction in Katrina
 - Lack validation
- Lab and Field data
 - -n~0.20, with LARGE variability (factor~10)
 - Chow: very high vegetation + 0.05 to 0.1

Summary

Data Requirements

- Controlled experiments
 - Quantify relative density, relative submergence, flexibility, seasonality (vegetation height/density)
 - Test over range of irregular waves

- Field Measurements

- Large scale
- Natural variability

Modeling

- Validation

Increase sophistication

- Temporal variability of n
- Interaction with mean currents
- Separation of bottom friction and form drag
- Impact on setup

of Engineers