

Zachry Department of
CIVIL ENGINEERING TEX

TEXAS A&M***ENGINEERING**

Nonlinear Waves over Dissipative Mud

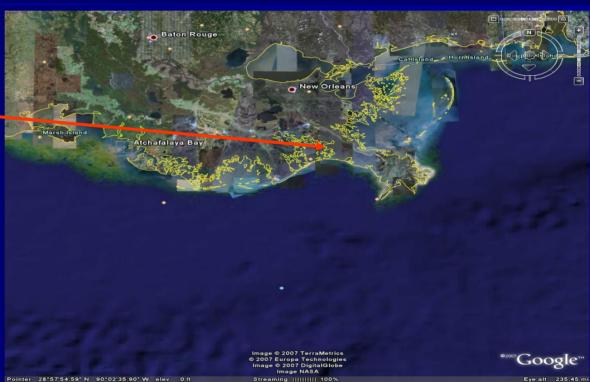
James M. Kaihatu and Navid Tahvildari Zachry Department of Civil Engineering Texas A&M University

Alexandru Sheremet and Steve Su Department of Civil and Coastal Engineering University of Florida

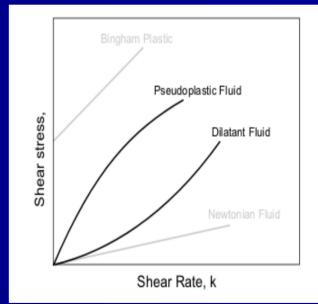
The Beach: Sand, Surf, Seashells

When you say "beach", this is what you think of...

The Beach : Silts, Clays, Mangroves


Cassino Beach, Brazil

Coastal Louisiana


- Diversion channels proposed to build wetlands – drain off surge
- Potential for bringing large amounts of muddy sediment to coast and inner shelf
- Beneficial wave attenuation effects?

Wave Propagation Over Muds

Dissipation Mechanisms: Proxies for Mud

- *Two Layer Viscous Fluid:* waves propagating over a denser, more viscous fluid at the bottom
 - Gade (1958); Dalrymple and Liu (1978); Wen and Liu (1995); Ng (2000)
- Visco-elastic medium: waves propagating over a non-rigid bed (Silly Putty, chewing gum)
 - Hsaio and Shemdin (1980); Macpherson (1980); Sakakiyama and Bijker (1989); Maa and Mehta (1990); Jiang and Watanabe (1995)
- *Bingham plastic:* solid at low stresses, viscous fluid at high stresses (toothpaste, tomato ketchup)
 - Mei and Liu (1987)
- More complex descriptions:
 - Foda(1989): coupling viscoelastic bottom with surface sideband instabilities
 - Jiang and Mehta (1995): adjustable rheology

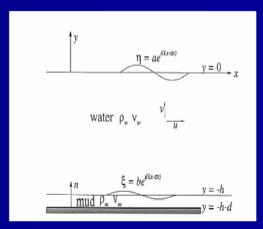
Wave Propagation Over Muds

Ng (2000 Coastal Engineering)

 Most theories lead to dispersion relations with complex wavenumber: many roots possible

 Ng (2000) – boundary layer reduction of Dalrymple and Liu (1978)

 Mud modeled as viscous fluid in thin layer over bottom


• Wavenumber perturbation:

 $k = k_1 + \delta k_2 + \dots$

• Dissipative wavenumber explicit in terms of nondissipative wavenumber

affects wavelength $\eta = a e^{i(k_r x - \omega t)} e^{-k_i x}$ Imaginary part of wavenumber dampens wave

Real part of wavenumber

From Ng (2000)

Wave Propagation over Muds

Ng (2000 Coastal Engineering)

Linear dispersion . relation for k_1

$$\omega^2 = gk_1 \tanh k_1 h$$

Real part of dissipative wavenumber k_2 _____ (changes wavelength)

Imaginary part of dissipative _____ wavenumber k₂ (dampens wave)

$$k_{2r} = -\frac{\operatorname{Re}(B)k_1}{\sinh k_1 h \cosh k_1 h + k_1 h}$$

$$D_n = k_{2i} = -\frac{\text{Im}(B)k_1}{\sinh k_1 h \cosh k_1 h + k_1 h} = -\frac{\delta_m (B'_r + B'_i)k_1^2}{\sinh 2k_1 h + 2k_1 h}$$

$$B = f\left(d, \delta_m, \gamma = \frac{\rho_w}{\rho_m}, \zeta = \sqrt{\frac{\nu_m}{\nu_w}}\right)$$

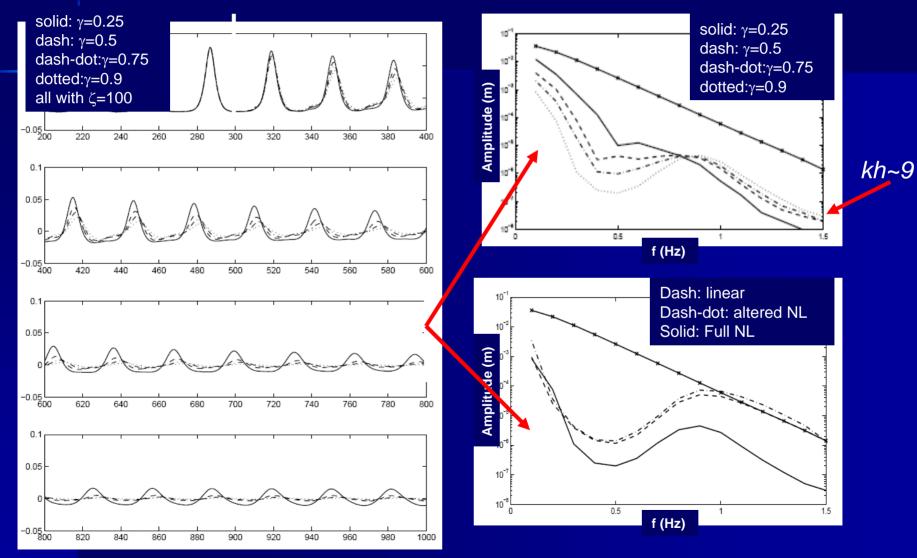
d= depth of mud layer

 δ_m = mud boundary layer thickness

Wave Propagation Over Muds

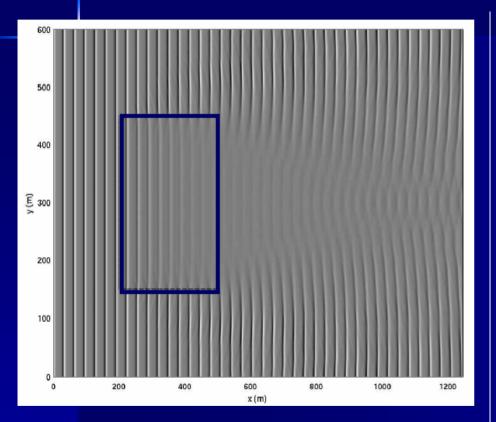
Nonlinear triad wave model of Kaihatu and Kirby (1995) with mud dissipation (Kaihatu et al. 2007)

Surf Zone Dissipation (*Thornton and Guza 1983*)

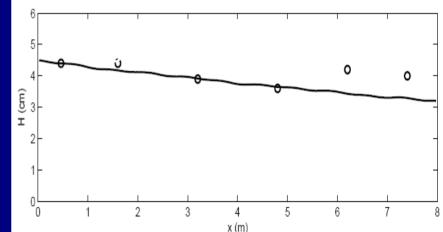

$$A_{n,x} + \frac{C_{gn,x}}{2C_{gn}}A_n + \frac{D_nA_n}{A_n} + \alpha_nA_n = -\frac{i}{8\omega_nC_{g,n}} \left[\sum_{l=1}^{n-1} RA_lA_{n-l}e^{i\Theta_{l,n-l}} + 2\sum_{l=1}^{N-n} SA_l^*A_{n+l}e^{i\Theta_{n+l,n-l}}\right]$$

One-Dimensional

Parabolic Two-Dimensional (**REF/DIF-S** with nearshore nonlinear interactions)


$$2i(kCC_{g})_{n}A_{n,x} + i(kCC_{g})_{nx}A_{n} - 2(kCC_{g})_{n}(\bar{k}_{n} - k_{n})A_{n} + \left[\left(CC_{g}\right)_{n}A_{ny}\right]_{y} + 2i(kCC_{g})D_{n}A_{n}$$
$$= \frac{1}{4}\left[\sum_{l=1}^{n-1}RA_{l}A_{n-l}e^{i\Theta_{l,n-l}} + 2\sum_{l=1}^{N-n}SA_{l}^{*}A_{n+l}e^{i\Theta_{n+l,-l}}\right]$$

High frequency damping – effect of subharmonic interaction


Kaihatu et al. (2007)

Two-Dimensional Wave-Mud Interaction

Two-Dimensional damping of cnoidal waves over flat bottom

Comparison to DeWit (1995)

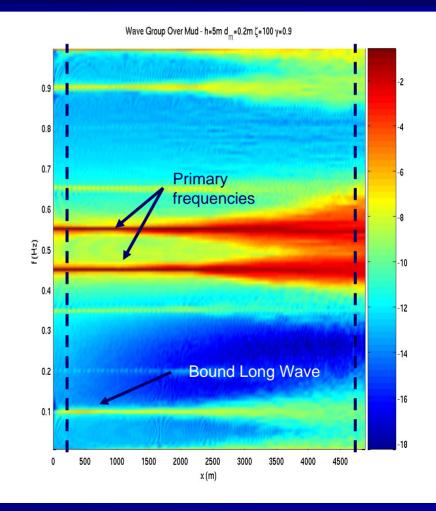
•h= 0.325 m• $\rho = 1300 kg/m^3$ • $d_m=0.115 m$ • $v_m= 2.6 \times 10^{-3} m^2/s$ (maple syrup)

 $\gamma = 0.76 \zeta = 44.7$

•*H* = 0.045 *m* •*T* = 1.5 *s*

Kaihatu et al (2007)

Wave Groups over Mud Patch

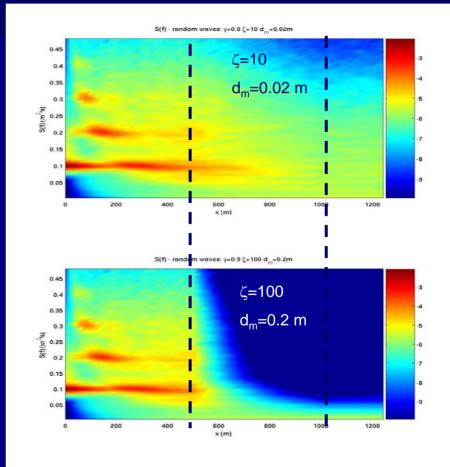

• Sheremet and Stone (2003): high frequency damping due to mud event

 Sheremet et al (2005): damping of high frequencies caused by dissipation of bound long wave exerting energy drain on entire system

• We run wave groups through the model; primary wave frequencies in deep water

Bound long wave generated and dissipates slowly over 5km

 No significant damping of wave group frequencies, but higher frequencies do appear to damp

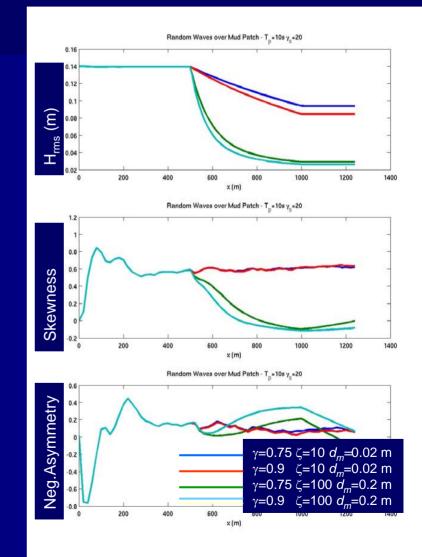

Random Waves Over Mud Patch

• Random waves (TMA with random phase) with peak period of *Tp*=10 s at input

• γ=0.9; ζ=(10, 100); *dm*=(0.02 m, 0.2 m)

• *h*= 1*m*

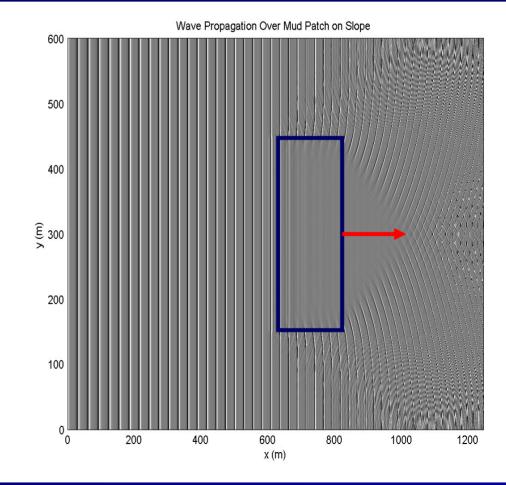
 Very strong cross-spectral damping with the high damping case (high frequencies feel bottom)



Color shade plots of log of spectral density

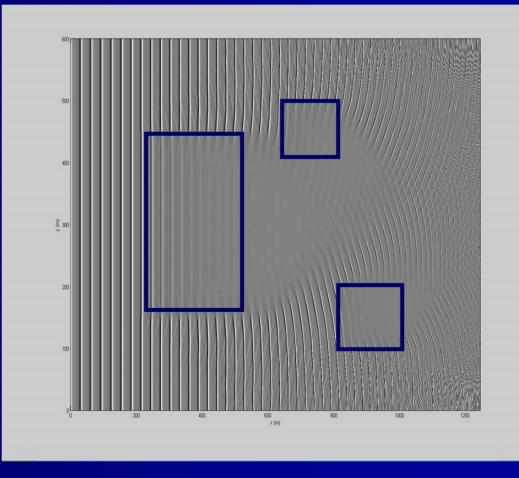
Random Waves Over Mud Patch

Random Waves over Mud – Effect on Wave Shape Statistics


- Significant effect of mud damping on waveheight (energy)
- High-damping case strongly affects skewness
- Mud does not have a strong effect on asymmetry
 - Asymmetry not high for this situation

Breaking Wave and Mud Dissipation

Cnoidal Wave Propagation over Sloping Bottom


- Interest Invert
 free surface for
 mud properties
- Strong diffraction effects behind mud patch
- Large effect on surface

Breaking Wave and Mud Dissipation

Cnoidal Wave Propagation over Sloping Bottom

- Isolated mud patches
- Interacting diffraction patterns
- Diffraction pattern will complicate inversion

Summary

Effects of mud deposits on waves
 Beneficial side effects?

- Nonlinear wave model with viscous mud dissipation (Kaihatu et al. 2007)
 - Mud dissipation affects subharmonic interactions
 - Indirect damping of high frequencies
 - Favorable comparison to experimental data (DeWit 1995)

Summary

- Wave groups: some indirect draining of high frequency energy
- Random waves: strong frequency dependence of damping
 - Affects third moment estimations
- Two-dimensional wave-mud interactions on slope
 - Dissipation from breaking and mud
 - Diffraction effects behind patch dependent on local depth
 - Excessive mud patchiness complicates surface image inversion