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1 INTRODUCTION 
 
This paper describes the first steps towards the operationalisation of an approximate 
method for the computation of non-linear four-wave interactions in discrete wave spectra. 
This method, the Two Scale Approximation (TSA), was already described in Resio et al. 
(1992), but it took years to mature (cf. Resio and Perrie, 2007). It is a hybrid method 
using a combination of pre-computed exact non-linear transfer rates and correction terms. 
Computations by Resio and Perrie (2007) show that the TSA is able to approximate the 
exact non-linear transfer rate rather well for a wide range of spectra. The TSA is valid for 
both deep and shallow water. These promising results suggest that the TSA qualifies for 
inclusion in operational discrete spectral wave prediction models. In this way an 
acceptable balance might be achieved between computational requirements and accuracy. 
A successful implementation of the TSA in operational wave models might replace the 
Discrete Interaction Approximation (DIA), which was developed by Hasselmann et al. 
(1985). As described in Van Vledder et al. (2000), the DIA suffers from a number 
shortcomings that might be remedied by the TSA.  
 
The basic feature of the TSA is to split an arbitrary input spectrum in two parts. The first 
part is referred to as the broadband structure which captures the main shape of the input 
wave spectrum and which can be described parametrically. The second part is the 
residual part, defined as the difference between the arbitrary wave spectrum and the 
parametric spectrum.  
 
The non-linear transfer rate of the total wave spectrum is computed in two steps. In the 
first step the non-linear transfer rate for the broadband spectrum is obtained from a 
database with pre-computed exact transfer rates, for instance with the WRT method (Van 
Vledder, 2006). This part of the solution is referred to as the first scale. Using a database 
implies that only a limited number of spectral shapes are included in the database. In the 
second step the total transfer rate is determined by adding the contribution of so-called 
cross terms consisting of the residual spectral densities, pre-computed coupling 
coefficients and Jacobians. These cross terms can be considered as correction terms to the 
non-linear transfer rate of the broadband structure. This part of the solution is referred to 
as the second scale. Since not all cross terms are accounted for, some approximations are 
made in the TSA method.  
 



Gerbrant van Vledder  2 

The inclusion of the TSA in a discrete spectral wave model is of practical interest. To that 
end, the TSA should be written in subroutine form. The input of such a subroutine is the 
discrete wave spectrum in combination with the discrete frequencies (or wave numbers), 
discrete angles and water depth. The output of the subroutine consists of the non-linear 
transfer rate. Optionally, additional input and output arguments can be specified in such a 
way that they control the inner workings of the TSA and report on possible problems in 
the evaluation of the TSA.  
 
The operationalisation of the TSA comprises transforming the research version of the 
TSA code into a generally applicable subroutine that can be implemented in any third-
generation spectral wave model, like STWAVE, SWAN, WAM and WAVEWATCH. It is 
stressed that this paper is not about the quality of the TSA as an alternative to replace the 
DIA in operational wave models. Such aspects are addressed elsewhere and in subsequent 
studies about the performance of an operational TSA in discrete spectral wave models. In 
this paper the focus is on the operational aspects of the TSA. 
 
The structure of this paper is as follows. Section 2 describes the TSA method and its 
resemblance with the WRT method. Its algorithmic implementation as a generally 
applicable subroutine is described in Section 3. Finally, Section 4 describes the further 
development of the TSA and possible optimizations.  
 
2 DESCRIPTION OF THE TSA METHOD 
 
The TSA method is based on the WRT-method for the computation of the non-linear 
transfer rate in a discrete wave spectrum (Tracy and Resio, 1982, Resio and Perrie, 1991). 
The WRT is based on Webb’s (1978) choice of transformations to remove the δ-functions 
in the Boltzmann integral derived by Hasselmann (1962). Following Van Vledder (2006) 
the non-linear transfer rate or rate of change of the action density n1 at wave number k1 
can be written as 
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in which the transfer function T is given by 
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The term G is the coupling coefficient, which is a function of all four wave numbers 
involved in an interaction. The δ-functions reflect the resonance conditions which also 
ensure conservation of energy, action and momentum. As described in Van Vledder 
(2006) removing the delta-functions in (1) leads to the following expression for the 
function T 
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 ( )1 3 1,2,3,4,
s

T ds G J N= × × ×∫k k . (3) 

 
The function T consists of a line integral over a closed locus in wave number space and 
where G, J and N1,2,3,4 are functions of the locus coordinate s. The locus can be 
considered as the solution in wave number space of the resonance conditions for a given 
combination of the wave numbers k1 and k3. In (3) J is the Jacobian term given by  
 

 
1

,2 ,4g gJ
−

= −c c  (4) 

 
The term N1,2,3,4 is the product term of action densities 
 
 ( ) ( )1,2,3,4 1 3 4 2 2 4 3 1N n n n n n n n n= − + −  (5) 

 
Details about the determination of the locus and the evaluation of (3) can be found in Van 
Vledder (2006). 
 
As noted before, the basic feature of the TSA method is to split the spectrum into a 
broadband part b and a perturbation term p for all four wave numbers involved in an 
interaction according to 
 
 for 1, 4i i in b p i= + =  (6) 
 
Substitution of (6) into the product term of action densities N1,2,3,4 leads to 
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The first line of Eq. (7) consists of action densities of the broadband spectrum. The 
second line contains action densities of the perturbation spectrum, whereas the other 
terms contain a varying mix of action densities from the broadband and perturbation 
spectrum. The complete transfer integral can be separated into the transfer rate of the 
broadband spectrum and seven additional contributions  
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In (8) the subscript j refers to the jth row in Eq. (8) and B(k1) is the exact transfer rate for 
the broadband spectrum. In Resio and Perrie (2007) it is argued that the terms in (7) 
containing the perturbation terms p2 and p4 can be omitted since they do not contribute 
significantly to the total transfer rate. A practical benefit of this assumption is that these 
terms are not easily known for a given decomposition of an arbitrary spectrum, whereas 
the other terms follow directly from the decomposition. Retaining the other terms yields 
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Substitution of (9) in Eq. (8) gives 
 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1
1 2 4 3 1 1 3 4 2 1 3 4 2 1 3 3 3 3

1 3 1 2 4 3 3 3

1 3 1 3 1 3 4 2 3 3 3

s

s

s

n
B b b p p p p b b b p b b p b JGdsk dk d

t

B p p b b JGds k dk d

p p b p p b b b JGds k dk d

θ

θ

θ

∂ = + − + − + − +  ∂

 
= + − 

 
 

+ + + − 
 

∫∫ ∫

∫∫ ∫

∫∫ ∫

k

k

 (10) 
 

The terms 2 4

s

b b JGds∫  and ( )4 2

s

b b JGds−∫  depend on the wave number combination 

( )1 3,k k  but not on the actual action density terms. Therefore, they can be pre-computed. 

This is done using an adapted version of the WRT method. Following Resio and Perrie 
(2007) these terms can be written as a pumping term (product of the densities at the wave 
numbers k1 and k3) and a diffusive term (involving differences in densities of the wave 
numbers k1 and k3): 
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Combining the various equations leads to the following formulation of the TSA 
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Equation (12) reveals the formal structure of the TSA. Similar to the WRT method, this 
formulation is valid in deep and shallow water. For any given wave number k1 a loop 
over all spectral components k3 is to be made. The contributions to the transfer rate 
consist of products of action densities of the broadband spectrum and the perturbation 
spectrum, multiplied with tabulated data stored in the matrices Λd and Λp. The main 
difference with the WRT method is the absence of the repeated integration along the loci 
for each k1-k3 wave number combination, which saves a considerable amount time.  
 
3  OPERATIONALISATION OF THE TSA 
 
Discretisation 
An important step in the operationalisation of the TSA is to discretise expression (12) 
such that it can be applied in a discrete spectral wave model. It is assumed that the wave 
spectrum is given in terms of a discrete energy density function of the discrete 
frequencies fi (for i=1,Nf) and directions θj (j=1,Nθ) with a constant spacing ∆θ. An 
additional requirement is that the frequencies (or wave numbers) are distributed 
geometrically, viz. subsequent frequencies are related according to fi+1=(1+δ) fi, with 
δ=0.1 typically. In practice the proper Jacobian transformation between wave number 
space based action density spectra and frequency-direction energy density spectra must 
be applied since existing operational wave model use different conventions for wave 
spectra.  
 
Based on expression (12) the non-linear transfer rate at a certain discrete wave number 
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The above expression is the basic computational scheme of the TSA. Thus, for every 
spectral bin a loop is made over all spectral bins to compute the contribution of the cross 
terms using pre-computed data from the modified WRT method. In expression (13) the 
terms B, Λd and Λp are two- and four-dimensional matrices containing pre-computed 
results for a given broadband action density spectrum b(k). These matrices are linked to 
each other since they are all based on the same broadband spectrum.  
 
It is noted that expression (13) can be optimized considerably. Many terms can be 
neglected since their contributions to the total transfer rate are insignificant. Expression 
(13) contains inner loops over all possible spectral bins (k3i,θ3j). Similar to the WRT 
method, many contributions can be filtered out when the ‘distance’ in wave number space 
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between the wave numbers k1 and k3 is larger than a certain threshold value. Such a 
limitation of integration ranges can be formalized by introducing the normalized variables 
k* and θ* according to (cf. Resio and Perrie, 2007) 
 

 

[ ]

1 3
*

* 1 2

p

k k
k

k

θ θ θ

−=

= −
 (14) 

 
The brackets in the directional term indicate that periodicity of directions is accounted 
for. A disadvantage of (14) is its dependency on the peak wave number kp. This led Van 
Vledder (2006) to apply a local wave number criterion based on the ratio of the wave 
numbers k1 and k3, thus k*=k1/k3. Both methods can be used to reduce the computational 
requirements of the TSA while retaining sufficient accuracy. In the present phase of the 
operationalisation of the TSA these definitions of the variables k* and θ* and their 
integration ranges are not yet determined. 
 
As with any approximate method the accuracy of the TSA degrades as the arbitrary 
spectrum deviates more and more from the broadband spectrum. A straightforward 
solution to this problem is to have a set of many broadband spectra with associated pre-
computed non-linear transfer rates and matrices Λd and Λp. These pre-defined spectra 
(and related transfer rate and matrices) must cover a wide range of spectral shapes 
regarding e.g. peak frequency, scale factor, peakedness and directional spreading to 
ensure accuracy of the TSA. It is therefore of interest to determine the number of required 
spectral shapes to enable the TSA to produce accurate answers.  
 
Fortunately, scaling rules exist that limit the number of required spectral shapes. It can be 
shown that for spectra of the form 
 
 ( ) ( ), ,n

pE f fθ α υ θ−= Ψ  (15) 

 
with ν=f/fp, the nonlinear transfer rate of energy density spectra can be expressed as  
 
 ( ) ( )3 11 3, ,n

nl pS f fθ α υ θ−= Ω  (16) 

 
In addition, rotational symmetry exists for two similar spectra that only differ in their 
mean directions. In the case of spectra with two different mean directions θm,1 and θm,2, 
the non-linear transfer rate is rotated over the angle ∆θ=θm,1-θm,2. Applying these rules to 
two similarly shaped spectra, but with different parameters α, fp and θm gives the 
following relationship valid for JONSWAP type spectra with either an f-4 or an f-5 spectral 
tail1: 
                                                 
1 JONSWAP spectra can be written in the general form αg2(2π)1-mf -mfp

m-5exp[-(m/n)(f/fp)
-n]Γ with Γ the peak 

enhancement factor and m the power of the spectral tail. The fp
-m-term is required to keep the proper 

dimensions and to ensure that the peak of the spectrum occurs at f=fp. A useful discussion on this subject 
can be found in Holthuijsen (2007). 
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The transformation rules and rotational symmetry reduce the number of required pre-
computed spectra and related transfer rates and matrices. The way in which these rules 
are applied in a subroutine version of the TSA is explained in the next Section.  
 
An example of the scaling of non-linear transfer rates for two similar spectra but with 
different scale factors and peak frequencies is shown in Figure 1. For higher frequencies 
the scaling is not perfect. This is due to the finite frequency range for which the transfer 
rate is computed.  
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Figure 1: JONSWAP spectra (γ=2) with peak frequencies of 0.2 Hz and 0.3 Hz and 

related non-linear transfer rate. The scaled transfer rate is indicated by the red 
dots. 

 
In shallow water, the scaling with the peak frequency does not apply since the shape of 
the transfer rate also depends on the water depth. It is therefore necessary to have a set of 
pre-computed spectra that are characterised by different values of kmh in which km is the 
mean and h is the water depth. The peak wave number kp is considered to be less suited 
since it estimation is not robust enough, especially in the case of multi-peaked spectra. 
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Structure of the operational TSA 
The transition of the TSA from a research code into a generally applicable code requires a 
rethinking of its structure. A characteristic of the research code used by Resio and Perrie 
(2007) is the emphasis on the TSA as a means to compute the non-linear transfer rate 
using many pre-set variables and a pre-set loop structure. The computation of additional 
source terms to simulate the evolution of the wave spectrum comes in second place. 
 
For an operational version of the TSA the wave model comes in the first place, which 
needs separate subroutines to compute source terms for a given wave spectrum and 
environmental variables as wind, depth and current. 
 
An important requirement of a generally applicable routine is that the number of 
frequencies and directions must be kept flexible. In addition, it must be possible to 
specify certain settings of the TSA regarding the extent of the inner loops, the 
computation of the spectral characteristics of the input spectrum, the decomposition of an 
arbitrary spectrum into a broadband spectrum and a perturbation spectrum, options for the 
search for the best-fitting broadband structure and location and format of the pre-
computed broadband transfer rates and related matrices. Further, a convention for naming 
the pre-computed data files must be determined. Finally, the TSA is programmed in 
Fortran 90 to make use dynamical allocation memory. 
 
The subroutine version of the TSA uses as basic input arrays with the discrete frequencies 
(or wave numbers), the directions, energy density spectrum (or action density spectrum) 
and the water depth. The output of the TSA routine consists of the nonlinear transfer rate 
at all spectral bins. In practise, a simple interface will be necessary to transform between 
the different conventions of wave model spectra in use by the various operational wave 
models like WAVEWATCH, STWAVE or SWAN and to reverse the indexing of frequency and 
direction bins if necessary. Additional input arguments comprise settings about the inner 
workings of the TSA. An additional output argument comprises of an error indicator. 
 
The basic steps in the TSA subroutine are as follows: 

• Determination of the characteristics of the input wave spectrum, viz. the peak 
frequency fp, the energy contents E or scale factor α, the mean direction θ, the 
peakedness γ and the directional spreading σ. An example of fitting a parametric 
JONSWAP spectrum to an arbitrary input spectrum is shown in Figure 2. In this 
example the peak enhancement factor of the best-fitting JONSWAP spectrum is 
1.15.  

• For shallow water applications the above list needs to be extended with the 
dimensionless water depth kmh, where km is a mean wave number and h the water 
depth. These parameters are needed to search the best fitting broadband spectrum 
and for the scaling of the nonlinear transfer rate. This list may need to be extended 
with other shape characteristics when further tests indicate relevant dependencies; 

• Search the best corresponding broadband spectrum in the database represented by 
its peakedness γ, directional spreading σ and for shallow water the dimensionless 
water depth kmh. As noted before, this list may need to be extended with other 
spectral characteristics. In Figure 2, a peakedness factor of 1.15 was found. In 
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general, this factor will differ from the set of pre-computed peak enhancement 
values of the broad-band spectra. In such a situation, the nearest value, e.g. 1, will 
be taken. The same applies for the other characteristics of the pre-computed 
broad-band spectra; 

• Read the broadband exact non-linear transfer rate and related matrices from file. 
These data can be read in formatted or unformatted form. Formatted file i/o is 
useful for testing purposes. In future versions of the TSA unformatted file i/o will 
be implemented since this is much faster than formatted file i/o.  

• Split the input spectrum into a broadband spectral form and the perturbation term. 
This procedure is illustrated in Figure 2. The characteristics of the broadband 
frequency spectrum can be the JONSWAP parameters fp, α, γ. The directional 
spreading can be based on a cos2s([θ-θm]/2) directional distribution, but other 
directional distribution can also be chosen. Further tests are needed to determine 
the optimal shape of the parameterized directional distribution; 

• Apply scaling laws and directional transformation to obtain the proper transfer 
rate for the broadband spectrum and perturbation terms. An important 
consideration is that the peak frequency scaling of the spectra should be based on 
the discrete frequencies. Since the frequencies (and wave numbers) are 
geometrically spaced, a scaling of the frequency axis is similar to shift the energy 
(or action) densities over a discrete number of bins. Similar considerations apply 
to the angular rotation of the spectra. These rotations should be restricted to 
multiples of the directional step ∆θ. These additional requirements avoid the 
introduction of interpolation errors. It is noted that this technique is also used in 
the EXACT-NL model (Hasselmann and Hasselmann, 1985).  

• Evaluate TSA correction terms and add these results to obtain the non-linear 
transfer rate for the transformed arbitrary input spectrum, as splitted in a 
broadband part and a perturbation part. 

• The last step of the TSA subroutine is to transform the computed non-linear 
transfer rate back to the original frequencies and directions.  

 
The TSA subroutine will also contain an error indicator as output variable to point to 
specific errors that might have occurred during the evaluation of the TSA. For instance, 
the program execution may stop when the pre-computed non-linear transfer rates matrices 
cannot be found because the path is invalid. Catching error messages enables the host 
program to take appropriate action. Such a procedure is required for any robust 
operational wave model. 
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Figure 2: Measured frequency spectrum, fitted spectrum and perturbation spectrum. 
 
 
 
4  FURTHER DEVELOPMENT OF THE TSA 
 
Preparations for the TSA 
An important feature of the TSA is the use of pre-computed non-linear transfer rates and 
related matrices for a range of parametric spectra. As noted before their peakedness and 
directional spreading will initially characterize these spectra. For shallow water the non-
dimensional water depth kmh will be used. The extent and resolution of these 
characteristics is the subject of sensitivity studies in the further development of the 
operational TSA.  
 
An essential requirement in the set-up of these pre-computed non-linear transfer rates and 
related matrices is that the discretisation of the frequencies and directions should be 
identical to those used by the host program. In addition, the power of the parametric 
spectral tail should also be equal to those of the host model. The computation of the pre-
computed non-linear transfer rates should be performed with an adapted version of the 
WRT method. Such versions were developed by Resio and Perrie (2007) and by the 
author in the framework of this study using the WRT method described in Van Vledder 
(2006).  
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Testing the TSA subroutine 
The implementation and operational use of the TSA is performed in steps, in which each 
steps adds further functionality. The first step in the development of the TSA was to 
make a modified version of the WRT method to generate the non-linear transfer rate and 
related matrices for a given parametric spectrum. In addition, a subroutine was set-up for 
reading an energy density spectrum with the same characteristics as the parametric 
spectrum that was used to generate the database with the non-linear transfer rate and 
related matrices. In this way the consistency between all elements of the TSA was tested 
for the first scale. In the next step a small perturbation to the input spectrum was made to 
test the effectiveness of the correction terms, which is the essence of the second scale of 
the TSA.  
 
The second phase of testing the TSA is related to test the scaling of similar spectra. In 
this phase the following aspects are tested: 

• α -scaling for similar spectra but with different energy contents; 
• frequency scaling for similar spectra but with different peak frequencies; 
• rotational transformation for similar spectra but with different mean directions. 

 
The third phase is to test the effectiveness of the TSA when the arbitrary input spectra 
deviates in shape from the parametric spectra for which non-linear transfer rates and 
related matrices have been computed. Resio and Perrie (2007) carried out such tests, but 
it is essential to repeat these tests and confirm their findings.  
 
After completion of these tests the last and most important phase of the testing will start, 
viz. its applicability in operational wave models and its added value compared to the 
DIA. Academic tests on individual (parametric) spectra are no guarantee that the TSA 
will also work for spectra that occur during a wave model run. Therefore, the following 
aspects will be addressed in this phase: 

• The reproduction of realistic growth curves and their similarity with a wave 
model version using an exact computation of the non-linear transfer rate. These 
tests are needed to show that the system of equations (i.e. the wave action 
balance equation using the TSA as a subroutine) produces stable results.  

• Its ability to produces (more peaked) spectral shapes than the DIA and the 
similarity of spectral shapes obtained with a model version using an exact 
computation of the non-linear transfer rate. 

• The inclusion of the diagonal term for use in the implicit integration scheme of 
the WAM model. 

• Overall model performance in academic and field cases. Here, model 
performance is related to integral wave parameters and spectral shapes. 
Interesting academic cases are the wave model response after a sudden wind 
shift or a slanting fetch situation. Interesting field cases should be taken from 
well-documented model studies, e.g. those in Lake George, Australia or at 
Duck, NC, USA.  
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Speeding up the TSA 
The basic computational method of the TSA method described in this paper consists of a 
double loop over all wave numbers, scaling techniques and data transfer from pre-
computed non-linear transfer rates and related matrices. In the preliminary phase of 
subroutine development efficiency generally has not the highest priority, since the proper 
workings of all elements of the TSA are crucial. In this phase of development the 
following potential optimisations were identified:  

• Optimization of internal loops, will boils down to determine the optimal range 
of integration of the non-dimensional parameters k* and θ*. This will also affect 
the size of the pre-computed matrices; 

• A useful property of the T-function is its symmetry: ( ) ( )1 3 3 1, ,T T= −k k k k . 

This property allows computing only half of all possible combinations of wave 
numbers, and symmetric storing of the contributions to the non-linear transfer 
rate can be used.  

• The present implementation use data transfer using formatted (ASCII) data files 
to enable easy inspection of the data. The speed of the TSA can be improved by 
replacing the data format by unformatted (binary) data files.  

 
5  CONCLUSION 
 
The TSA is a promising technique for the evaluation of the non-linear transfer rate in 
discrete spectral wave models. It is expected that the TSA provides an economic 
alternative to the exact computation of the non-linear transfer rate, such that it may 
replace the DIA as the working horse for the evaluation of these interactions in 
operational wave models. Various studies are under way to determine its applicability in 
operational wave models. 
 
Acknowledgements 
This work is carried out in the framework of the MORPHOS project of the US Army 
Corps of Engineers, purchase number W912BU-07-P-0209. Their support and the 
discussions with Don Resio and Jeff Hanson at Duck, NC, are greatly acknowledged.  



Gerbrant van Vledder  13 

 
References 
Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum: Part 

1. General theory. J. Fluid Mech., 12, 481-500. 
Hasselmann, S., K. Hasselmann, J.A. Allender, and T.P. Barnett, 1985: Computations 

and parameterisations of the nonlinear energy transfer in a gravity-wave spectrum. 
Part 2: parameterisation of the nonlinear transfer for application in wave models. J. 
Phys. Oceanogr., 15, 1378-1391.  

Hasselmann, S, and K. Hasselmann, 1985: The wave model EXACT-NL. Ocean Wave 
Modelling, The SWAMP group. Plenum Press, New York, 256p. 

Holthuijsen, L.H., 2007: Waves in oceanic and coastal waters. Cambridge University 
Press. 387 pp. 

Resio, D.T., and W. Perrie, 1991: A numerical study of nonlinear energy fluxes due to 
wave-wave interactions. Part 1: Methodology and basic results. J. Fluid Mech., 223, 
609-629. 

Resio, D.T., W. Perrie, S. Thurston, and J. Hubertz, 1992: A generic third-generation 
mave model: AL. Proc. 3rd Int. Workshop on Wave Hindcasting and Forecasting, 
May 19-22, Montreal, Québec, Canada.  

Resio, D.T., and W. Perrie, 2007: A two-scale approximation for efficient representation 
of nonlinear energy transfers in a wind wave spectrum. Accepted for publication in 
Journal of Physical Oceanography.  

Tracy, B.A., and D.T. Resio, 1982: Theory and calculation of the nonlinear energy 
transfer between sea waves in deep water. WIS Technical Report 11, US Army 
Engineer Waterways Experiment Station, Vicksburg, Mississippi, USA, 47 pp. 

Van Vledder, G.Ph., 2006: The WRT method for the computation of non-linear four-
wave interaction in discrete spectral wave model. Coastal Engineering, 53, 223-
242. 

Van Vledder, G.Ph., T.H.C. Herbers, R.E. Jensen, D.T. Resio and B.A. Tracy, 2000: 
Modelling of non-linear quadruplet wave-wave interactions in operational wave 
models. Proc. 27th Int. Conf. On Coastal Engineering, Sydney, pp. 797-811. 

Webb, D.J., 1978: Non-linear transfers between sea waves, Deep-Sea Res., 25, 279–298. 
 


