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1. INTRODUCTION

This paper compares the performance of the
Joint Probability Method (JPM; Myers, 1970)
and the Empirical Simulation Technique
(EST; Scheffner, et al, 1999) for estimation of
hurricane surge frequency. These two
statistical approaches have been widely used
in past coastal flood studies by both the U.S.
Army Corps of Engineers (Corps) and the
Federal Emergency Management Agency
(FEMA). Statistical simulation methods such
as JPM and EST are required for coastal flood
frequency analysis primarily because there is
an insufficient historical record from which to
derive frequencies by more conventional
means, such as gage analysis. Hurricanes, for
example, are both sporadic and of limited
spatial extent, contributing to a great deal of
sample variation (sample error) in local tide
gage records.

Used in its original form, an EST estimate for
a site is based entirely on the historical storms
and flood levels observed at that site.
Alternate life cycles are simulated by
assuming that storm occurrence rate follows a
Poisson distribution, and by implementing a
bootstrap resampling from the set of observed
events to construct synthetic records. Flood
frequency and variability estimates are then
derived from this synthetic data. More recent
applications of EST have also considered
hypothetical storms obtained by parallel

displacement of the historical tracks so as to
provide more uniform coastal coverage.

JPM, on the other hand, seeks to consider all
possible storms, not just those particular
combinations of storm characteristics that
have been observed within the historical
record. To achieve this, a number of
assumptions regarding storm description and
behavior must be made. For example, it is
assumed that storms can be characterized by
a small set of parameters that can be
combined in numerous ways, such that the
probability of a given combination — a given
storm — is determined by the joint probability
of the several parameters.

It is evident that both approaches have
conceptual strengths. For example, EST is
based entirely on storms that actually occurred
within the study area (so that the sample is
known to be consistent with the local
population; this is not necessarily true of a
JPM study). On the other hand, it is evident
that some coastal regions may have been
either lucky or unlucky in their recent history,
experiencing too few or too many severe
events. This sample variation appears more
troublesome for EST than for JPM, since JPM
considers all possible combinations of storm
parameters thought to be consistent with local
conditions, not just the random small
observed set.



Considerable interest in the merits of the two
approaches developed during recent post-
Katrina/Rita work undertaken by the Corps
and FEMA. The LaCPR, IPET, and FEMA
studies in Louisiana and Mississippi all
adopted the JPM approach in the belief that it
is the better approach for hurricanes, if not
necessarily for other sorts of storms. This
difficult choice was based on the best
interpretation of the available data and on the
perceived strengths and limitations of the two
methods, but remained a matter of
considerable uncertainty and some
controversy. The work reported here was
undertaken in order clarify the relative
performance issues.

2. APPROACH

The key idea of the approach is to first posit
forms of the hidden rules of nature, then to
use those rules to generate appropriately
random synthetic “flood” events over periods
of “history” and lengths of “coast,” and from
those results to exercise both EST and JPM to
estimate flood frequencies. The frequencies
estimated in this way can be compared to the
true values which are implicit in the
postulated hidden rules. A second key element
of the approach is to adopt a very simple but
adequate proxy for coastal floods in order to
permit very large numbers of simulations to
be made with minimal computational effort.

2.1. BASIC ASSUMPTIONS

Many factors are critical to real-world storm
surge simulation that are of little or no
significance to the essential features of this
study. In a real application, one is concerned
with the complex response of the sea over an
arbitrary basin and terrain, including the
effects of wind, pressure, waves, coriolis
force, tides, and more. However, such
complexity can only obscure the underlying
features of interest here, so that a simple

proxy idealization of the environment is
preferred. Since a key factor is the size of the
flood footprint compared to the spacing of
storm tracks, the concept of space must be
certainly be preserved, but it is sufficient to
consider only the most general such space: a
long, straight, uniform coast, intersected by
random straightline storm tracks. We have
assumed a straight coast 1000 miles in length.

Hydrodynamic considerations have been
dispensed with entirely. Instead, simple
functions of wind speed have been adopted as
indicator functions, replacing surge
calculations. Storm surge certainly mimics the
onshore winds in the only way essential to our
purposes: surge tends to be higher where the
winds are greater, so that the shape of the
alongshore surge footprint can be sufficiently
well approximated by some function of
windspeed; the details of the transfer function
between winds and surge are of little interest
beyond this simple fact. Similarly, the
absolute magnitude of the response is not
relevant, just as, for example, the problem is
independent of the choice of unit used to
measure surge. Representative wind speeds
and directions can be computed very
efficiently using any of a number of idealized
wind field representations. 

The approach requires adoption of a
parameterized storm description. For this, the
simple windfield model used in many past
FEMA coastal flood insurance studies was
chosen (FEMA, 1988). The model
characterizes a hurricane windfield in terms of
the usual five parameters:  the central pressure
depression, ΔP; the radius to maximum winds,
Rmax; forward speed of the storm, Vf; track
direction, θ; and shoreline crossing point, X.
The top curve in Figure 1 shows the shape of
this windfield measured in units of Rmax from
the eye, and normalized by the peak wind
speed. The bottom curve is the shape of the
squared winds, discussed below, and the



middle curve is representative of actual surge
variation on straight coasts.

The unknown population was defined so as to
be generally consistent with the realities of the
northern Gulf of Mexico as characterized
during recent post-Katrina studies (Resio,
2007; Toro, 2007). Each parameter was
described by a probability distribution similar
to, but not necessarily identical to, a
distribution used in one of those studies
(differences have been assumed deliberately,
to ensure that the findings given here will not
be construed as actual Gulf estimates). In
particular: the pressure deficit ΔP has been
taken to be Gumbel; the storm radius, Rmax, is
assumed gaussian and correlated with
pressure; the forward speed of the storm, Vf is
gaussian and independent of other parameters;
the track direction, θ, is also independent and
gaussian. The shoreline crossing point, X, has
been assumed to be uniformly distributed. 

The correlation postulated for Rmax is a linear
dependence of the mean radius on central
pressure, such that greater central pressure
depressions are associated on average with
smaller storms; the coefficient of variance of
Rmax is taken to be constant so that the spread
around the pressure-dependent mean is greater
for weaker storms. Finally, the rate of storm
occurrence was taken to be 5E-04 storms per
kilometer per year, consistent with the rate of
occurrence of the stronger storms in the

northern Gulf.

The basic proxy for surge elevation was taken
to be the square of the normal component of
the wind at the center of the shoreline (the
conceptual study site), normalized by a fixed
constant so as to give response values on the
order of ten to twenty, in accordance with
one’s expectation for surge magnitude; it must
be remembered, or course, that the scale is
entirely arbitrary and the results to be shown
below should not be interpreted in any way as
surge elevations for Gulf regions. The square
was chosen since the wind stress is
proportional to the square of the wind speed;
the normal component was adopted as the
obvious choice. This basic profile is
illustrated by the bottom curve in Figure 1.
Owing to all the ignored hydrodynamic
processes, this profile is actually somewhat
narrower than is typical of real surge along a
straight coast. In order to reveal the effect of
the width of the surge footprint, therefore, a
wider profile was also considered,
corresponding to the first power of the wind
speed; this is shown by the upper curve in
Figure 1. Typical surge profiles tend to lie in
between these two, as shown by the middle
curve (the upper curve inside the radius of
maximum winds). This footprint variation is
of interest since it is anticipated that EST
performance may improve with increasing
storm size (additional tests were made using
still broader profiles corresponding to the 0.5
and 0.25 powers of the basic profile).

2.2. SIMULATION SETS

Within these idealized assumptions, a basic
simulation set is defined by a selected period
of record, T,  and a conceptual coast length, L;
as noted, the conceptual coast is 1000 miles
long. A basic period of record of 65 years was
chosen. This choice was made since it is
approximately the same as the record used in
the post-Katrina studies, and corresponds to

Figure 1  Wind and Surge Profiles



the period since WWII during which adequate
data exists. Two other periods were
considered. A short record length of 30 years
was investigated, since this is the common
rule of thumb for the minimum length needed
for a 100 year frequency  analysis. A longer
record of 140 years was also adopted,
corresponding roughly to the entire hurricane
record, and standing in the same proportion to
65 as 65 does to 30.

Multiple sets, S,  of each period of record
were simulated (50 and 10 sets of 65 year
records, and 10 sets of 30 and 140 year
records). Although these repetitions
correspond to as many as 3,250 years, they are
still inadequate to establish precise
quantitative estimates of performance owing
to the slowly-converging effects of sample
variation. However, as will be seen, they are
fully adequate to display the qualitative
features of primary interest.

The study then proceeded by looping over the
S periods of record, then over the T years
within a period. For each year, the
hypothetical  number of storms was
determined from the adopted Poisson
distribution, and for each of those storms,
parameters were randomly chosen from the
postulated parent distributions.

2.3. JPM ANALYSES

Given the storms defined in the several
simulation sets, the JPM analyses proceeded
just as they do in practice. That is, for a given
simulation set, the first order of business is
estimation of the storm parameters from the
sample. This includes the annual rate of
occurrence and the distribution of each of the
storm parameters except the crossing point
which, as usual, was assumed uniform. A
basic set of JPM analyses was performed
using the same distribution types as chosen
for the parent distributions, but fitted to the

samples and without consideration of
correlation between pressure and radius; that
is, pressure and radius were treated as entirely
independent in the basic set of JPM
determinations.

Additional JPM cases were run using alternate
assumptions regarding the form of the
pressure distribution. These included
gaussian, generalized normal (subsuming log
normal), generalized logistic, and Pearson III
representations. The specific forms adopted
for these distributions followed Hosking and
Wallis  (1997). Finally, additional simulations
were run incorporating the sample
correlations between pressure and radius. In
this case, each sample was used to determine
the best linear fit of radius vs pressure, and the
coefficient of variance was similarly
estimated from the samples.

It might be objected that parameterization
using the same families as used for the parent
distributions would give an unwarranted
advantage to the estimates, but this is not the
case, owing to the large amount of sample
variation. Furthermore, it was not thought
appropriate to assume unrealistic distribution
shapes, as might be justified were nature
thought to be somehow malicious in hiding
her cards. In fact, the broad nature of the
distributions is known from observation, so
that accepting them is reasonable. Note that
the experiments using the gaussian, logistic,
generalized normal, and Pearson III forms for
the pressure samples were done blind; that is,
no attempt was made to see which fit the
sample best, and it is likely that the three-
parameter distributions would perform better
than the basic Gumbel, as far as apparent fit is
concerned. But as will be seen below, the
choice of the form of the sample pressure
distribution was essentially irrelevant to the
results.

Finally, all JPM estimates were made by a



brute-force approach, chopping each
parameter distribution into pieces, and
simulating all combinations. No more
sophisticated JPM-Optimal Sampling
techniques were used (see Toro, 2007, and
Resio, 2007, for a description of such
methods) . For the basic JPM evaluations,
2016 storms were constructed from 8
pressures, 4 radii, 3 forward speeds, 3 track
angles, and 7 crossing points. Sensitivity to
the number of storms was tested using 5,600,
8,400, 22,400 and 23,520 storms in different
cases.

2.4. EST ANALYSES

The EST analyses also followed precedent,
based upon prior Corps studies for example,
to determine stage frequency relationships
from the same samples used with JPM. The
EST effort was  considerably less than for
JPM, since it was not necessary to first
estimate parameter distributions – the
simulation sets provide all the information
required by EST.

No effort was made to exercise the many
flexible options which can be found inside the
EST program. Instead, the intent was to
perform a straightforward analysis using EST
as it would usually be used (and has been
used) in such an application. For this, we
followed many helpful suggestions of
Scheffner (2007) regarding the art of actual
EST practice.

Only in one way did we depart from a simple
EST evaluation of the bare historical record.
That was in a set of additional EST
simulations to investigate the effect of adding
hypothetical storms by translating the
historical tracks parallel to themselves to
alternate shoreline crossing points, and
considering those storms to be part of the
historical record. A few words about how that
was done are in order.

In some past EST studies, tracks have been
arbitrarily added by replicating a real track
some distance to both the left and right of
itself, and dividing the probability mass of the
storm accordingly. For example, replicants
might be added 1 degree to each side, with the
weight divided by three. The justification for
this approach (suggested in the EST
documentation) is not evident. Clearly, the
result would be different if the division were
made into eleven storms, say, and if the ten
replicants were translated to positions spaced
by, say, multiples of five degrees to the left
and right. In such an extreme case, 10/11 of
the probability weight of the storm would be
lost from the study area. This is clearly
unreasonable, but is not in principle different
in any way from a division by three with
nearby spacing. 

In this study, an approach with some
reasonable justification was used. Every storm
in a given sample fell at some coastal crossing
point, but could just as well have fallen at any
other point, by the assumption of uniformity.
Furthermore, each storm had a “rate” of once
per T years (typically, once per 65 years).
Now, imagine the coast of length L divided
into equal segments of length dx.  Then the
chance that the storm might have passed
through any such segment would be dx/L,
with a rate of dx/(LT). One imagines, then,
including all such storms in the EST
calculations. Of course, many of them would
fall far from the site, not producing local
surge, and so would not need to be included in
the simulations. It is recognized that the rate
associated with each replicant goes to zero by
this method as the coastal length, L, goes to
infinity, but this is not a problem since a
larger L would bring more storms into the
sample in a precisely compensating way.
Ideally, the spacing dx would be taken to be
about equal to the storm radius in order to
smooth out alongshore variations. However,
for reasons of simplicity, a fixed spacing of 20



miles was used in our tests.

3. RESULTS

3.1. ESTIMATES OF THE TRUE VALUES

The simulation sets included different
assumptions regarding nature, such as the
width of the surge footprint. For each such
variant of the parent, there is a corresponding
set of true values for, say, the 50, 100, and
500 year surge values.

True values have been determined by simply
performing a JPM analysis using the
postulated parent distributions, including the
pressure-radius correlation. A very large
number of simulations were done, in order to
ensure that the true values were accurately
evaluated. Both 8,400 storms and 22,400
storms were simulated, with good agreement
between the two estimates. In each of the
tables shown below, the appropriate  true
values are shown along with the JPM and EST
estimates.

Attention has been focused on the 50, 100,
and 500 year values. It had been intended to
include 10 year values (of interest for FEMA
flood insurance studies) , but to do so requires
simulation of many more (weaker) storms and
so was not done. In each case to be presented,
we show the means, standard deviations, and
coefficients of variation (CV) of the estimates.
These are usually based on 10 simulation sets
of 65 years each, but other values are shown
as noted. Tests were performed with 50 sets,
and with periods of record of 30 and 140
years as previously discussed. In some cases,
we show values for each of the ten simulation
sets, so as to display the magnitude of the
sample variation most vividly.

3.2.1. BASIC CASE, 10 SIMULATION
SETS

This case included 10 sets of 65-year records,
with the following findings for JPM and EST,
as identified in each table. The JPM estimates
do not account for correlations between
pressure and radius found in the samples;
complete independence of parameters is
assumed. The  true values, of course, reflect
the assumed parent correlation.

JPM 50 yr 100 yr 500 yr

1 6.3 7.8 11.0

2 5.9 7.5 10.4

3 5.6 7.0 9.8

4 6.2 7.6 10.4

5 6.1 7.7 10.5

6 6.3 7.9 11.3

7 5.8 7.3 10.3

8 6.5 8.0 11.1

9 6.0 7.6 10.8

10 6.0 7.3 10.1

Ave 6.07 7.57 10.57

SD 0.27 0.31 0.47

CV 0.04 0.04 0.04

True 5.7 7.1 10.0

All estimated values are somewhat high, a
characteristic which was observed throughout
this work. Despite this, the variation is
relatively small from set to set, as reflected in
the coefficients of variation which are only
4% of the means. The 100 year estimates for
these ten cases range from 0.1 unit less to 0.9
units more than the true value of 7.1 units.

The EST results were as follows for the same
data sets:



EST 50 yr 100 yr 500 yr

1 8.3 9.6 12.8

2 --- --- ---

3 8.1 10.9 18.9

4 6.0 7.4 11.0

5 5.3 8.3 16.5

6 10.0 14.4 26.8

7 5.3 6.8 10.4

8 6.6 7.9 11.2

9 6.0 8.5 15.0

10 5.4 6.6 9.3

Ave 6.77 8.95 14.6

SD 1.66 2.44 5.52

CV 0.25 0.27 0.38

True 5.7 7.1 10.0

The most prominent feature of these EST
results is the very large variability of the
estimates for the ten 65 year records. The 100
year estimate, for example, varies between 6.6
and 14.4 units, with an average of 8.95. No
results are shown for Set 2, owing to an
insufficient number of storms in the sample
for that 65 year period.  

3.2.2. BASIC CASE, 50 SIMULATION
SETS

In this case, 50 sets of 65 year periods were
simulated. We show only the summary data
for the JPM estimates.

JPM 50 yr 100 yr 500 yr

Ave 6.11 7.67 10.82

SD 0.36 0.39 0.60

CV 0.06 0.05 0.06

True 5.7 7.1 10.0

It can be seen that the results are not greatly
different from the JPM findings with ten 65
year samples. The EST equivalents are also
not significantly different from the 10 set EST
case.

3.2.3. BASIC CASE, 140 YEAR RECORDS

In this case, based on 10 sets, each record
consists of 140 years, but is otherwise
determined in the same manner as the
preceding cases. Both the JPM and EST
estimates are shown; the true values, of
course, are unchanged from before. Only the
summary values are shown (variability can be
inferred from the CV values).

JPM 50 yr 100 yr 500 yr

Ave 6.15 7.81 10.90

SD 0.18 0.23 0.39

CV 0.03 0.03 0.04

True 5.7 7.1 10.0

Interestingly, longer periods of record did not
improve the accuracy of the JPM means, but
did reduce the variability. This implies that
the shorter records do a reasonably good job
of capturing the distribution shapes.

The EST results were:

EST 50 yr 100 yr 500 yr

Ave 6.13 8.13 13.36

SD 1.29 1.28 2.79



CV 0.21 0.16 0.21

True 5.7 7.1 10.0

In each case, the EST estimates are improved
with the longer records.

3.2.4. BASIC CASE, 30 YEAR RECORDS

Again, there were 10 sets of simulations in
this experiment, but each consisted of only 30
years of data. The results were as follows:

JPM 50 yr 100 yr 500 yr

Ave 6.19 7.74 10.89

SD 0.62 0.68 1.09

CV 0.10 0.09 0.10

True 5.7 7.1 10.0

The JPM averages were degraded only
slightly, although the variability was
substantially increased for these shorter
records. For EST, the results were:

EST 50 yr 100 yr 500 yr

Ave 6.33 8.47 13.80

SD 1.74 2.21 4.51

CV 0.27 0.26 0.33

True 5.7 7.1 10.0

Interestingly, the means were not much
degraded from the 140 year case, although the
variability is greater. Even more interestingly,
the 65 year results are somewhat worse than
these, a finding that apparently must be
attributed to the dominant effects of sample
variation, and the need for much larger
simulation sets to reach more definitive
conclusions. However, the results clearly

demonstrate the quandary of an analyst who
must work with only a single data set of
perhaps as many as 65 years.

3.3.1. WIDER SURGE FOOTPRINT (1.0)

In this case, we repeated the basic case of 10
sets of 65-year records, but adopted a wider
surge profile (the top curve in Figure 1) based
on the 1.0 power of the wind shape factor. The
expectation was that EST would improve in
this case, since there is a greater chance of the
study site being affected by larger surge. The
summary results were:

JPM 50 yr 100 yr 500 yr

Ave 7.04 8.25 10.81

SD 0.23 0.28 0.43

CV 0.03 0.03 0.04

True 6.7 7.9 10.7

Note that the true values are different for this
case.  The EST results were:

EST 50 yr 100 yr 500 yr

Ave 8.14 10.22 15.31

SD 1.52 2.27 4.79

CV 0.19 0.22 0.31

True 6.7 7.9 10.7

3.3.2. WIDER SURGE FOOTPRINT (0.25)

The preceding EST results are, in fact, better
than the EST estimates made with the
narrower surge profile.  In view of this,
further widenings were tested, using the 0.5
and 0.25 powers of the windfield shape factor
(not shown in the figure). The following
summary results are for the more extreme of
these cases (0.25). Again, note that the true



values are different from those before.

JPM 50 yr 100 yr 500 yr

Ave 8.30 9.68 11.64

SD 0.23 0.24 0.42

CV 0.03 0.03 0.04

True 7.9 9.2 11.9

For the EST determinations, the
corresponding findings were:

EST 50 yr 100 yr 500 yr

Ave 9.83 12.01 16.87

SD 1.35 1.84 3.36

CV 0.14 0.15 0.20

True 7.9 9.2 11.9

In this case, the relative errors are comparable
to the 1.0 power case, but the variability is
substantially reduced, as might be expected
since the chance of missing a site is less with
a wider footprint.

3.4. HYPOTHETICAL TRACKS (EST)

As a final EST experiment, the basic case,
discussed first, was re-done with all storms
replicated at 20 mile intervals along the
shoreline, and with the storm weights divided
accordingly. There is no JPM equivalent for
this case.

EST 50 yr 100 yr 500 yr

1 6.2 8.4 15.2

2 5.9 8.0 14.2

3 5.6 7.8 14.0

4 6.3 8.5 15.3

5 5.9 8.0 14.9

6 6.4 8.7 15.3

7 5.4 7.3 13.9

8 6.4 8.8 16.1

9 5.8 8.1 14.7

10 5.8 7.9 13.9

Ave 5.95 8.13 14.75

SD 0.35 0.45 0.73

CV 0.06 0.05 0.05

True 5.7 7.1 10.0

These results are substantially better than the
basic EST estimates made without
hypothetical tracks, especially in terms of the
variability of the result, which now shows a
CV of only about 5% of the mean vs 30%
without hypothetical tracks. The means are
slightly improved (except for the 500 year
estimate which is negligibly worse; however,
see a concluding comment about the 500 year
values).

3.5.1.  JPM WITH GAUSSIAN PRESSURES

The remainder of the results to be shown
concern only JPM, with no EST counterparts.
Since the findings are not strikingly different
from earlier material, only summary results
will be shown. The first result is for a JPM
estimate using the basic 10 sets of 65-year
records, but using a gaussian distribution to fit
the sample pressure data. One might expect
this to give a poor quality result, owing to the
lack of similarity between a symmetrical
gaussian and a more reasonable Gumbel
distribution.



JPM 50 yr 100 yr 500 yr

Ave 6.16 7.69 10.48

SD 0.26 0.27 0.34

CV 0.04 0.03 0.03

True 5.7 7.1 10.0

The result, however, is seen to confound the
expectations. The averages are only slightly
worse than the fits obtained using a   Gumbel
distribution, and the variability is actually
slightly improved. This result also goes to
support the argument made earlier that
adopting the same distribution types for both
the parent and the samples is not an
unreasonable choice.

3.5.2. JPM WITH GENERALIZED
NORMAL PRESSURES (LOG-NORMAL)

This experiment duplicates the previous case,
but with the generalized normal distribution
chosen rather than a simple gaussian. The
generalized normal is a three parameter
distribution including both gaussian and log-
normal distributions as special cases (see
Hosking and Wallis , 1997).

JPM 50 yr 100 yr 500 yr

Ave 6.06 7.63 10.61

SD 0.25 0.28 0.47

CV 0.04 0.04 0.04

True 5.7 7.1 10.0

The results are negligibly different from the
preceding case, or from the basic case using
Gumbel sample fits.

3.5.3. JPM WITH GENERALIZED
LOGISTIC PRESSURES

This continues the ideas of the previous two
tests, but this time with the generalized
logistic distribution for the fits (see Hosking
and Wallis for details of the distribution).

JPM 50 yr 100 yr 500 yr

Ave 6.04 7.61 10.44

SD 0.23 0.26 0.46

CV 0.04 0.03 0.04

True 5.7 7.1 10.0

As before, the results change little with a
different distribution.

3.5.4. JPM WITH PEARSON III
PRESSURES

Finally, the following table shows a summary
of the findings with JPM and the basic 10 sets
of 65-year records, but with pressures fit using
the Pearson III distribution.

JPM 50 yr 100 yr 500 yr

Ave 6.07 7.63 10.63

SD 0.25 0.28 0.47

CV 0.04 0.04 0.04

True 5.7 7.1 10.0

The lack of any significant change is
remarkable.

3.6. JPM WITH P:R CORRELATION

As a final experiment, we show the JPM
results for the basic case of 10 sets of 65-year
records, but with the sample correlations
between pressure and storm radius accounted
for. This was done in a manner similar to that
used in the post-Katrina Gulf studies: a
regression relationship was first determined



between the sample radii and pressures, in
order to establish a mean radius as a function
of pressure. The distribution of the radius
around this mean was assumed to be gaussian,
with a fixed coefficient of variation; that is,
larger means imply larger standard deviations.
The results were:

JPM 50 yr 100 yr 500 yr

Ave 6.02 7.52 10.38

SD 0.29 0.36 0.55

CV 0.05 0.05 0.05

True 5.7 7.1 10.0

One should compare these results with the
very first table, which was for the same
conditions except that full independence was
assumed. At each recurrence level, these new
results accounting for the sample correlations
are negligibly better for the averages than the
case assuming independence, and are
negligibly worse in terms of variability.

In order to understand the reason for this lack
of improvement, the correlation data for 50
sets of 65-year records was inspected. It was
found that in 24 of those 50 simulated records,
the sample correlation was of opposite sign to
the true correlation postulated for nature’s
distributions. In other words, in nearly half of
the simulated data sets, the effect of sample
variation was to show an increase of mean
radius with an increase of ΔP, contrary to
assumption. On reflection, this is not too
surprising, although it remains very
troublesome as a practical matter. All samples
will exhibit a correlation, even if the parent
distributions are entirely uncorrelated. One
can see this easily by tossing a pair of coins
ten times, creating two ten-element series; the
sample correlations between the two series
will almost  always be found to be significant,
but are entirely spurious. This observation

merits careful reflection and some additional
investigation since the real-world analyst is
provided with only one relatively short data
set from which to infer the nature of the
correlations. Arguments based on storm
physics become crucial to the justification of
sample estimates of the correlations.

4. DISCUSSION AND CONCLUSIONS

The two primary conclusions of the study are:

1) JPM was found to be remarkably robust,
even with relatively short data sets, and is
surprisingly insensitive to choice of
distribution forms and to parameter
correlations (within the ranges tested, which
do, however, approximate what is known of
nature). In the results shown here, JPM
estimates were typically biased high, but only
by about 5%, and CVs were usually only a
few percent of the mean. To some degree, this
robust performance at the 100-500 year level
indicates that the more uncertain tails of the
assumed distributions do not dominate the
results (although they become increasingly
important for more rare events).

2)  EST was found to be extremely sensitive
to sample variation of the sort associated with
hurricane surge (but not necessarily with other
less-sporadic and more wide-spread processes
such as northeasters). Variability of an EST
estimate over ten replications of the period  of
record from a fixed parent population often
exceeded a factor of two, and CVs of 20% and
more were typical. As with JPM, the averages
were biased somewhat high.

Interestingly, inclusion of the sample P:R
correlations did not improve the JPM
estimates. Contrary to the underlying
correlation posited for nature (based on real
data), the simulations produced opposite P:R
correlations nearly half the time, based on 65-
year samples. A major sort of correlation not



considered in this work is associated with
track angle in the event that storms can both
enter and exit a coast (the Florida peninsula,
for example). In such a case, the correlation
between angle and all other storm parameters
is strong, and has always been recognized and
accounted for in past JPM studies by the
simple artifice of dividing the storm
population into entering and exiting families.

The variability found for the EST tests is of
particular concern for an individual coastal
flood study. Even if a method performs
extremely well on the average, this is of little
comfort if results for a particular period of
record can vary by a factor of two. The overall
mean performance in a national program
might not be much affected by such
variability, with errors at many sites averaging
out; still, the expected error for any/every
particular study might be unacceptably large.

The work reported here is illustrative, only,
and cannot be read as a final statistical
evaluation of the JPM:EST merits. Both
approaches can probably be implemented in
better ways than the simple methods used
here. For example, no advantage has been
taken of recent advances in JPM methodology
(Resio, 2007, Toro, 2007). JPM fits were all
blind, with no effort to choose distributions
exhibiting best-fit performance. Similarly,
EST gives the user wide latitude in choice of
internal assumptions and methods, none of
which have been exercised here. For example,
all EST tests shown were done using four
nearest neighbors in the random walk
interpolations (although experiments with
three to six neighbors produced
indistinguishable results). Only 500 years
were considered in a single EST life-cycle
(although 100 such runs were made in each
case). In a typical test, doubling the length of
an EST period to about 1000 years improved
the 500 year mean estimates by about 2% (and
the more frequent levels by lesser amounts).

Rather, the goal has been to show what a
coastal engineer would be likely to encounter
with each approach in a typical case. The
findings seem clear, and confirm the
anticipation of the LaCPR, IPET, and FEMA
post-Katrina/Rita teams that EST estimates
would suffer excessively from sample error.
The commonly asserted JPM deficiency
regarding poor handling of storm parameter
correlations was not observed in our tests of
the pressure-radius correlation (in fact, the
limited experiments done here showed that
JPM seems quite robust in this regard)
although additional investigations of this
matter would be useful.

It is noted that the degree of EST
improvement that might be gained by properly
replicating historical tracks along the coast (as
opposed to the sort of arbitrary replication that
has been done in the past) appears to be very
small. The primary improvement is in
reduction of  alongshore variability rather than
in improved mean estimates at a point. This is
because the tracks being replicated are still
only derived from the limited sample, and do
nothing to account for the storm possibilities
not included in that sample. It is also noted
that increasing the number of storms through
track replication largely negates the perceived
advantage of EST regarding study economy.
For each of the ten 65-year sets simulated here
with hypothetical tracks, the number of storms
in a set was on the order of 400-500, each of
which would require expensive hydrodynamic
modeling in an actual application (whereas
recent JPM applications appear to have been
successful with about half that many model
simulations).

Finally, we emphasize that these findings
apply only to hurricane surge, and not to other
applications for which EST may perform well,
and may be the tool of choice. Numerous
examples of such other applications are
summarized in Scheffner, et al (1999).
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