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1 INTRODUCTION 
The Joint-Probability Method or JPM (Myers, 1975; 
Ho and Meyers, 1975) has become the standard 
approach for the evaluation of surge inundation 
probabilities from hurricanes.  The JPM provides a 
rigorous--yet practical--mathematical framework for 
combining the probabilistic characterization of 
hurricane occurrences and hurricane parameters in 
the region of interest with the results from numerical 
models that calculate the surge inundation generated 
by a hurricane of given characteristics, to calculate 
surge inundation probabilities.  In essence, JPM 
considers all possible combinations of storm 
characteristics at landfall, calculates the surge effects 
for each combination, and then combines these 
results considering the combinations’ associated 
probabilities.  The result is the annual probability of 
exceeding any desired storm stage.  Mathematically, 
this calculation is represented as a multi-dimensional 
integral (the JPM integral).   

Because the JPM must consider the effects of many 
possible combinations of hurricane parameters, 
traditional implementations of the JPM have required 
numerical wind, wave, and surge calculations for 
many synthetic storms (typically several thousands).  
At the same time, these numerical calculations have 
become computationally intensive with the 
introduction of more accurate algorithms, the ability 
to incorporate detailed data describing bathymetry 
and topography at smaller spatial scales, and the need 
to incorporate wave set-up.  As a result, it has been 
necessary to develop schemes that require a smaller 
number of artificial storms; these schemes have come 
to be called JPM-Optimal Sampling or JPM-OS.  

Two JPM-OS schemes have been developed and 
applied in recent probabilistic hurricane-studies 
performed by teams led by URS and by USACE for 
the central Gulf of Mexico coast.  We will refer to 

these schemes as the quadrature and response-
surface JPM_OS schemes, respectively, The 
quadrature JPM-OS keeps the number of synthetic 
storms small by employing an algorithm, that selects 
the parameter combinations in an optimal manner and 
assigning the appropriate weight to each synthetic 
storm, transforming the JPM multi-dimensional 
integral into a weighted summation in the process.  
The response-surface JMP-OS, on the other hand, 
interpolates between the surge results obtained for a 
carefully selected set of synthetic storms.  Both 
approaches take advantage of the smooth variation of 
the calculated surge η  as the hurricane parameters 
are varied. 

This paper begins with a description of the hurricane 
parameters used in most probabilistic surge studies, 
followed by a summary of the JPM formulation, as it 
is currently applied.  This is followed by a 
description of the quadrature and response-surface 
JPM-OS approaches, as well as a discussion of other 
approaches that require further investigation and may 
prove useful in probabilistic surge calculations.   

A forthcoming paper will provide detailed 
comparisons the results from the quadrature and 
response-surface approaches, when they are applied 
to multiple sites, using the same probabilistic storm 
characterization and the same numerical surge model.   

2 HURRICANE PARAMETERS 
For the purposes of the JPM formulation, we describe 
the storm as it approaches the coast in terms of the 
following parameters (see Figure 1): the pressure 
deficit P∆  (representing hurricane intensity), the 
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radius of the exponential pressure profile1 
pR  

(representing hurricane size), the forward velocity 
fV , the storm heading2 θ , and the landfall location 

(or, equivalently, the minimum distance from the 
track to a reference point along the coast).  These 
parameters are illustrated in Figure 1. These 
parameters represent the main hurricane 
characteristics affecting storm surge; they are treated 
as random variables in the JPM formulation.  Other 
storm characteristics, including parameter B 
(Holland, 1980), are treated as constant at landfall or 
are not considered explicitly.  Although hurricanes 
are much more complex than this parameterization 
allows for, and substantially more information is 
available for well-studied recent hurricanes, it is 
necessary at present to utilize this simple storm 
parameterization for the probabilistic characterization 
of future storms.  The differences between real 
hurricanes and this simple parameterization are not 
ignored in the JPM formulation employed in these 
studies.  They are included in a statistical sense by 
means of the ε  terms used in the JPM calculations, 
and then incorporated analytically into the results, as 
will be explained in Section 3.   

The development of the probability distributions for 
these hurricane parameters and the calculation of the 
associated annual occurrence rate for the URS/FEMA 
Mississippi Coastal Flooding Hazard Project-- 
including the data selection and the statistical 
analysis--is documented in URS (2007) and Risk 
Engineering (2007).  It is also summarized in another 
paper in this volume (Niedoroda et al. 2007).. 

 

3 THE JOINT PROBABILITY METHOD  
The JPM formulation combines the following inputs:  

(1) The annual rate of storms of interest λ .  
Typically, it is also assumed that the occurrences of 

                                                 
1 In the URS/FEMA study, it is assumed that the 
radius of the exponential pressure profile 

pR  and the 
radius to maximum winds maxR  (sometimes written as 
RMW) are identical or at least linked by a one-to-one 
relationship.   

2 Direction to, measured clockwise from North. 

these storms in time represents a Poisson random 
process (Parzen, 1962)3 

(2) The joint probability distribution )(xf X
 of the 

storm characteristics for storms of interest.  These 
characteristics are defined very broadly at first and 
narrowed down later to make the approach practical. 

(3) The storm-generated surge4 )(Xη  at the site of 
interest, given the storm characteristics.         

The combined effect of these three inputs is 
expressed by the multiple integral 

∫∫ >=>
x Xyr xdxPxfP ])([)(...][ )1max( ηηληη ( 1) 

                                                 
3 In practice, the Poisson assumption is not necessary.  
Weaker assumptions are sufficient when calculating 
the probabilities of rare events, as will be discussed 
below. 

4 In this definition, the term surge represents the peak 
total inundation, including the surge itself, wave 
setup, astronomical tide, etc.  
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Figure 1.  Characterization of storm as it approaches 
the coast. 
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where ])([ ηη >xP  is the conditional probability that 
a storm of certain characteristics x  will generate a 
flood elevation in excess of an arbitrary value η .  
This probability would be a Heaviside step function 

)]([ XH ηη −  if vector X  contained a complete 
characterization of the storm and if we had a perfect 
tool for the calculation of surge given x , but these 
conditions cannot be satisfied in practice.    The 
integral above considers all possible storm 
characteristics from the population of storms of 
interest and calculates the fraction of these storms 
that produce surges in excess of the value of interest 
η . 

The right hand side in Equation 1 actually represents 
the mean annual rate of storms that exceed η  at the 
site, but it also provides a good approximation to the 
annual exceedence probability5.   

Equation 1 defines a smooth function of η  that can 
be used to determine the flood levels associated with 
any annual probability of exceedence.  Typical values 
of interest include the 10%, 2%, 1% and 0.2 % 
annual probabilities.  These are often referred to as 
the 10-, 50-, 100- and 500-yr annual exceedence 
levels, respectively.  Unfortunately, the concept of 
return periods is often misunderstood.   

As noted by Resio (2007), some approximations are 
necessary in practice for the evaluation of Equation 1.  
Firstly, it would be impossible to calculate the surge 
exactly, even if the storm’s wind and pressure fields 
as a function of time were known exactly.  To this 
effect, we write the actual elevation )(Xη  in terms of 
the model-calculated elevation )(Xmη  as 

                                                 
5 The derivation to show that the annual probability 
for a rare event is approximately equal to annual rate 
is usually made by assuming that event occurrences 
represent a Poisson process and then linearizing the 
resulting exponential expression.  The same result 
may be obtained under weaker assumptions.  It is 
sufficient to assume that the probability of two or 
more of these rare events in one year is much lower 
than the probability of one event.  This condition is 
satisfied for hurricane-generated surges and for the 
exceedence probabilities of interest in these studies 
(e.g, 5% per year or lower). 

mm XX εηη += )()( , where mε  is a modeling-error 
term, which will be treated as a random quantity 
uncorrelated with X .  If the numerical surge model 
is unbiased, mε  has a mean value of zero.  Using the 
above representation, one can write the actual 
conditional probability as ])([ ηη >xP  as  

])([])([ ηεηηη >+=> mm XPXP  (2 ) 

 

In addition, it would be impossible to provide a 
complete characterization of the storm (i.e., the wind 
and pressure fields as a function of time).  Thus, it is 
convenient to partition the vector of storm 
characteristics X  into two parts, as follows: (1) a 
vector of principal quantities  

),locationlandfall,,( ,1 θfVRpPX ∆= , whose 
probability distributions are represented explicitly 
and whose effects are also represented explicitly in 
the model calculations, and (2) a vector of secondary 
quantities ...)tide,(2 BX = , whose distributions 
(relative to their base-case values) and effects are 
jointly represented in an approximate manner by  
random terms ,...),( tideεε B  (which have units of 
elevation).  These secondary quantities are ignored or 
set to their base-case values in the numerical surge 
calculations, but their effects are carried by their 
corresponding ε  terms.  Although these epsilons are 
conceptually different from the modeling error mε  
introduced earlier, they are combined operationally 
into one random quantity ...+++= tideBm εεεε .   

Incorporating these simplification, Equation 1 
transforms into 

∫∫ >+

=>

1
1 111

)1max(

])([)(...

][

x mX

yr

xdxPxf

P

ηεηλ

ηη
 (3 ) 

where ),locationlandfall,,( ,1 θfVRpPX ∆= .  The 
subscript 1 [as in 1X ] will be dropped in the 
remainder of this paper for the sake of simplicity, 
resulting in  

∫∫ >+

=>

x mX

yr

xdxPxf

P

])([)(...

][ )1max(

ηεηλ

ηη
 (4 ) 

The quantification of the standard deviations for the 
various components of ε  is not described here (see 
URS, 2007, or Niedoroda et al. 2007, this volume).  
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This quantification is done using a variety of 
approaches, such as modeling followed by 
uncertainty propagation, comparisons of observed 
surges to surges obtained using “best winds”, and 
comparisons of surges obtained using the limited 
parameterization employed in the production JPM 
calculations to the surges obtained using the best 
winds.  By integrating over the distributions of these 
ε ’s, we are incorporating (in an approximate 
manner) the effects of limitations in the numerical 
surge models and in our parameterization of  
hurricanes.   

 

4 THE QUADRATURE JPM-OS 
APPROACH  

As indicated earlier, evaluation of the JPM integral 
(Equation 4) using conventional numerical-
integration approaches is impractical for the 
following two reasons: (1) each evaluation of the 
integrand involves evaluation of )(xmη  for one value 
of x  (i.e., one synthetic storm), which requires 
computationally intensive numerical calculations of 
wind, waves, surge, wave setup, etc.; and, (2) 
numerical evaluation of the 5-dimensional integral in 
Equation 4 using conventional approaches requires 
that the integrand be evaluated a large number of 
times (this is the so-called curse of dimensionality).      

The quadrature JPM-OS approach approximates the 
integral in Equation 4 as a weighted summation, i.e.: 

])([

])([)(...

][

1

)1max(

∑

∫∫

=
>+

≈>+

=>

n

i
imi

x mX

yr

xP

xdxPxf

P

ηεηλ

ηεηλ

ηη
                   (5) 

where each ),locationlandfall,,( i,, iifiii VRpPx θ∆=  
may be interpreted as a synthetic storm6, ii pλλ =  
may be interpreted as the annual occurrence rate for 
that storm, and )( im xη  may be interpreted as the 
numerical-model’s estimates of the storm elevation 
generated by that storm.  For this approach to be 
practical, one must be able to specify the storm 

                                                 

6 More precisely, ),locationlandfall,,( i,, iifii VRpP θ∆  
represent the characteristics of the synthetic storm at 
landfall.   

characteristics ix  and their rates iλ  so that the 
integral can be approximated with sufficient accuracy 
(for all η  values of interest), using a reasonably small 
value of n (i.e., a reasonably small number of 
synthetic storms and corresponding numerical-model 
runs).   

The approach used to define the synthetic storms and 
their rates uses a combination of well-known and 
more sophisticated techniques and may be 
summarized by the following three steps: 

1. Discretize the distribution of P∆  into broad 
slices.  In the URS/FEMA work, we use 
three slices, roughly corresponding to 
hurricane Categories 3, 4, and 5. 

2. Within each P∆  slice, discretize the joint 
probability distribution of )( slicewithinP∆ , 
Rp, Vf, and θ  using the multi-dimensional 
optimal-sampling procedure known as 
Bayesian Quadrature (Diaconis, 1988; 
O’Hagan, 1999; Minka, 2000; see Section 
4.1).  This procedure represents the response 
portion of the integrand (i.e., the term 

])([ ηεη >+xP m ) as a random function of x  
with certain correlation properties, and 
determines the optimal values of 

iifii VRpP θ,,,,∆ , and the associated 
probability, so that the variance of the 
integration error is minimized.  The 
correlation properties of the random 
function (which take the form of correlation 
distances) depend on how sensitive the 
response is to each variable (shorter 
correlation distances for the more important 
variables).  These correlation distances were 
set based on judgment and on the results of 
the sensitivity tests described in URS (2007) 

3. Discretize the distribution of landfall 
location by offsetting each of the synthetic 
storms defined in the previous two steps.  
The offset is equal to 

pR  (measured 
perpendicular to the storm track).  
Sensitivity studies indicated that a spacing 
of 

pR  is small enough to capture the peak 
surge at all grid locations.   

Finally, one computes the probability ip  assigned to 
each synthetic storm as the product of the 
probabilities resulting from the three steps.  
Equivalently, one can compute the rate iλ  assigned to 



 

 5 

each synthetic storm as the product of the 
probabilities from the first two steps times the rate 
per unit length from Section 3 times the storm 
spacing. 

It is useful to discuss some possible variations to this 
scheme, which may apply to other situations.   

•  If one were performing calculations for a 
single site, one could treat location (or 
distance to the site) as one of the quantities 
in the Bayesian Quadrature (step 2).  To 
improve the efficiency of this scheme, one 
could use importance sampling (e.g., 
Melchers, 1999) to sample more heavily at 
distances near 

pR  on the strong side of the 
storm.  When performing calculations for a 
large number of sites, it is considered more 
convenient to sample distance using 
constant spacing (step 3 above).  

•  One could include ε  as one of the random 
quantities in the Bayesian Quadrature, 
instead of treating it as part of the effects 
term.  This change would have two 
detrimental effects on the efficiency of the 
Bayesian Quadrature scheme, as follows: (1) 
the number of dimensions is increased, and 
(2) the integrand becomes less smooth.  On 
the other hand, one can think of situations 
where this change may be required (e.g., if 
the hydrographs )(tη for the synthetic storms 
are to be used as inputs to a computationally 
intensive calculation that is nonlinear in 

)(tη ).   

4.1 BAYESIAN QUADRATURE 
APPROACH 

4.1.1 BACKGROUND 
The word Quadrature is often used to denote 
numerical techniques to approximate an integral of 
the form  

∫=
A

dxxpxfI )()(  ( 6 ) 

over some domain A, as a weighted sum of the form  

)(
1

i

n

i
i xpwI ∑

=

≈  ( 7 ) 

where )(xf  is typically a probability density function 
(i.e., it is positive and it integrates to unity) and )(xp  

represents a function belonging to a certain family of 
functions. 

In our case, A represents a four-dimensional domain, 
)(xf  represents the joint probability distribution of 

storm characteristics, and ])([)( ηεη >+= xPxp m  
represents the “surge effects” portion of the JPM 
integral (for many possible locations and for many 
possible values of η ). 

The design of a quadrature involves specification of 
the number of nodes n, and selection of the node 
values ix  and associated weights iw .  These 
quantities depend on the functional form of )(xf  and 
of the )(xp  family, and on the desired characteristics 
(e.g., accuracy) of the approximation.  In our case, 
each node becomes one synthetic storm. 

Classical (Gaussian) quadrature chooses the number 
of nodes, node values, and weights so that the 
summation will integrate the function exactly if )(xp  
is a polynomial of a certain degree and )(xf  is a 
particular function (e.g., a standard normal 
probability density).  This technique is used 
frequently in one dimension (see Miller and Rice, 
1983 for details and for results for a variety of 
probability distributions)7.   Extension of these zero-
error rules to more than one dimension is 
problematic. The number of required nodes increases 
rapidly with the number of dimensions (see Minka, 
2000).  Furthermore, some of the weights often 
become negative (see Genz and Keister, 1996), which 
leads to less stable results and makes it impossible to 
interpret the weights as probabilities.  

Bayesian quadrature, in contrast, considers a much 
broader probabilistically defined family of functions 
(i.e., random functions with a certain correlation 
structure), and minimizes the integration error in a 
mean-squared sense.  Conceptually, it is 
straightforward to extend Bayesian quadrature to 
multiple dimensions, although it becomes somewhat 
computationally demanding for more than six or 
seven dimension.  According to Diaconis (1988), the 

                                                 
7 Classical Quadrature is used later in this paper to 
construct an accurate, but inefficient, reference-case 
JPM formulation (which we call “JPM-Heavy”).  In 
this formulation, Classical Quadrature will be used to 
represent the probability distribution of each 
individual storm characteristic. 
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approach dates back to the work of Poincare in 1896.  
It is also closely related to the technique known as 
Kriging (e.g., Journel and Huijbregts, 1978), and 
even to least-squares regression. 

4.1.2 DERIVATION 
The development of Bayesian Quadrature begins by 
idealizing the function )(xp  in Equation 6 as a 
Gaussian random process8 in m-dimensional space 
with mean zero and with autocovariance function 

)]()([),( ypxpEyxk =   9 10, where ][⋅E  denotes 
mathematical expectation (i.e., ][zE  the average 
value of quantity z  over all possible realizations of 

                                                 
8 The assumption of the process being Gaussian is not 
strictly necessary.  One may obtain the same results 
using weaker assumptions. 

9 m is the number of dimensions for the integral in 
Equation 6.  In this derivation, x and y are m-
dimensional vectors, but we will not use underline or 
boldface for them for the sake of simplicity  

10 Details on the functional form of ),( yxk  will be 
considered later.  The only requirement at this stage 
is that the required integrals involving ),( yxk  and 

)(xf  do not diverge. 

)(xp ), and x and y are any two arbitrary values of x.  
The autocovariance function contains information 
about the degree of continuity or smoothness of 
realizations of )(xp , at both small and large scales 
(e.g., Vanmarcke, 1983).  

Let ],...,,[ 21 nxxxD =   denote n nodes11 for which 

)(xp  has been evaluated, so that we know the values 
of )](),...,(),([)( 21 nxpxpxpDp = .  Because we know 
the value of )(xp  at these n points, we also know the 
conditional mean and the conditional variance of 

)(xp  at all other values of x.  This is illustrated in 
Figure 2.  The mean )](|)([ DpxpE  is a linear 
combination of the known nodal values 

)](),...,(),([)( 21 nxpxpxpDp = , with coefficients that 
depend on the values of the covariance function 

),( yxk  between x and each nodal point and between 
each pair of nodal points.  The conditional variance 

)](|)([ DpxpVar depends on the values of the 
covariance function ),( yxk  only. 

                                                 
11 In our m-dimensional integration space, each node 
location ix  is a vector containing m nodal 
coordinates. 

x1 x2 x3

p(x1)

p(x2)
p(x3)

p(
x)

x
 

Figure 2.  Illustration of the conditional distribution of random function )(xp  
at intermediate points between sampling nodes.  The function )(xp  has been 
sampled at 3 nodes 321 ,, xxx .  The solid line displays the conditional mean 
value.  The dashed lines display the conditional mean ±  standard deviation 
range; the width of this range depends on the distance to the nodes and on the 
autocovariance function ),( yxk . 
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O’Hagan (1991) proposes an approximation to 
Equation 6 in which one uses the conditional mean 

)](|)([ DpxpE  in place of )(xp  (whose value we 
know at only a few points), i.e., 

∫∫ ≈=
AA

dxDpxpExfdxxpxfI )](|)([)()()(

 
( 8 )

Because the mean )](|)([ DpxpE  is a linear 
combination of the nodal values 

)](),...,(),([)( 21 nxpxpxpDp = , the above 
approximation is also a linear combination of the 
nodal values, which means that it has the same 
functional form of Equation 7 (i.e., a weighted sum 
of the values of )(xp  at the nodes), with weights that 
depend on ),( yxk  and on integrals involving ),( yxk  
and )(xf  (namely, == ],...,,[ 21 n

T wwwW  
1),(),( −DDKDxU ), where  
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( 10 ) 

 

Minka (2000) shows that one can arrive at the same 
weights with a least-squares formulation; i.e., by 
determining the weights that minimize the variance—
over all possible realizations of )(|)( Dpxp -- of the 
difference between the exact integral and the 
approximation given by Equation 7.     

The resulting weights from this approach may or may 
not add to unity, depending on the choice of ),( yxk  
and of D.  To ensure that the weights always add to 
unity—which is required because we want to 
interpret )](),...,(),([)( 21 nxpxpxpDp =  and the 
weights as an m-dimensional discrete probability 

distribution—we introduce the constraint 1
1

=∑
=

n

i
iw  

into Minka’s (2000)  least-squares representation of 
the problem.  We do this by means of a Lagrange 
multiplier, obtaining the following: 
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( 11 ) 

where µ  is the Lagrange multiplier (see, e.g., Journel 
and Huijbregts, 1978).  We solve this system of linear 
equations to obtain weights that add to unity. 

The associated estimation variance is given by the 
expression 

µ+−

=






 −∑∫
=

)(

)()()(
1

DUWu

xpwdxxpxfVar

T

i

n

i
iA  ( 12 ) 

where ],...,,[ 21 n
T wwwW =  is the vector of weights 

obtained by solving Eq. 11 and  

∫ ∫=
A A

dxdyyfxfyxku )()(),(  ( 13 ) 

It may also be possible to force the weights to sum to 
unity by assuming that )(xp  has an unknown (but 
generally non-zero) mean.  

So far in this discussion, we have treated the node 
locations ],...,,[ 21 nxxxD =   as known.  The 
development of an efficient quadrature rule requires 
finding the optimal node locations D  that minimize 
the variance in Equation 12 12, for a pre-specified 

                                                 
12 Note that now we have two nested optimizations, 
both of which seek to minimize the variance of the 
integration error.  At the inner level of nesting, there 
is the optimization to determine the best weights (for 
given nodal locations D).  This is done analytically, 
by solving Equation 11.  At the outer level, there is 
the search for the best set of nodal locations D.  This 



 

 8 

value of n.  Note that each ix  in D represents the 
coordinates of a node in m-dimensional space.  Thus, 
determination of the optimal D is an ( nm × )-
dimensional optimization problem.  We provide 
details on the algorithm used in Section 4.2.4 

We have not shown that all the weights are non-
negative, and in fact negative weights do arise when 
the nodal vector ],...,,[ 21 nxxxD =  is specified 
arbitrarily (i.e., without optimization).  On the other 
hand, it is reasonable to expect (and one may be able 
to prove) that optimization of ],...,,[ 21 nxxxD =  so as 
to minimize the variance in Equation 12, forces all 
the weights to be positive.  This argument is related 
to the concept of quadrature stability factor (i.e., the 
sum of the absolute values of the weights) employed 
by Genz and Keister (1996).  In our practical 
applications, the approach introduced here has always 
led to positive weights when D is optimized.   
Negative weights, if they happen to arise, may be 
eliminated by employing a numerical optimization 
scheme with inequality constraints on the weights. 

4.2 IMPLEMENTATION OF BAYESIAN 
QUADRATURE FOR JPM-OS 

This portion of the paper provides a number of details 
on how Bayesian Quadrature procedure is 
implemented as part of the Quadrature JPM-OS 
formulation used in the URS/FEMA study.  These 
details were left out of the derivation above, for the 
sake of generality and simplicity.   

4.2.1 PROBABILITY DISTRIBUTION: 
CHOICE FOR )(xf  

The Quadrature JPM-OS formulation must be 
flexible enough to accommodate the probability 
distributions typically used for ,, pRP∆  etc.  On the 
other hand, implementation of the Bayesian 
Quadrature formulation described above using a 
general form for )(xf  would require the repeated 
evaluation of the integrals in Equations 9 and 13, 
which are likely more complex than the JPM 
integrals we are trying to solve in the first place. 

Instead, we formulate the problem in m-dimensional 
standard normal-distribution space, determine the 
coordinates of the integration nodes in that space, and 
                                                                         

is done numerically (more details will be provided in 
the next section). 

then convert these nodal  coordinates to the 
“physical” space of ,, pRP∆  etc., in a manner that 
takes into account their joint probability distribution.  
This approach for the transformation of multivariate 
probability distributions is commonly used in 
structural reliability theory (e.g., Madsen et al., 1986; 
Melchers, 1999) and is built into structural reliability 
software (e.g., Gollwitzer et al., 2006).   

One can also achieve the distribution transformations 
by altering the weights, or by using a combination of 
both approaches.   

4.2.2 CORRELATION STRUCTURE OF 
)(xp : THE CHOICE FOR ),( yxk  

AND THE SPECIFICATION OF 
CORRELATION DISTANCES 

We use the correlation structure of )(xp , as 
represented by the covariance function ),( yxk , to 
specify the importance of the corresponding physical 
quantity in the surge calculations.  If the physical 
quantity corresponding to the j-th component of x is 
important, correlation decays faster in that direction 
than in the direction corresponding to a less 
important quantity.    

One of the consequences of formulating and solving 
the Bayesian Quadrature problem in normal space is 
that we must also define ),( yxk in normal space.  
Also, we must choose a functional form that 
facilitates analytical evaluation of the integrals in 
Equations 9 and 13.  

We choose the double-exponential functional form 
for the covariance function, i.e.,  

∏
= 























 −
−

==

m

j j

jj

c
yx

ypxpEyxk

1

2

2 exp

)]()([),(

σ
 

( 14 ) 

where 
jc  controls how quickly the correlation decays 

in the direction of a particular component 13 14 15.    
jc  

                                                 
13 In this section, the subscripts denote the 
coordinates of one point in m-dimensional space 
(j=1,…m); x and y denote two points in that m-
dimensional space.       
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is related to the corresponding correlation distance or 
scale of fluctuation 

jd  (Vanmarcke, 1983) by the 

relation 
jj cd π= .  Because the algorithm operates 

in standard normal space, 
jc  and 

jd  have no physical 
units.      

One of the critical steps in the Quadrature JPM-OS 
analysis is the specification of the correlation 
distances 

jd  associated with the various hurricane 
characteristics.  This is made more difficult because 
these correlation distances are specified in normal 
space, not in physical space.  The following 
discussion provides some guidance to facilitate this 
step.  

In a relative sense, the Quadrature JPM-OS algorithm 
tends to spread the sampling nodes more faithfully 
along those directions for which )(xp has lower 
correlation distances, providing a closer match to the 
marginal probability distributions in those directions.  
Thus, it is important to specify correlation distances 
that relate to the importance of the various physical 
quantities, in order to obtain an optimal allocation of 
effort among the various directions.   

In an absolute sense, numerical experiments in one 
dimension show that low values of the correlation 
distance cause the algorithm to be more cautious and 
tend towards equal weights, while high values 
provide a wide range of weights, approaching those 
obtained by Gaussian quadrature.  The ideal choice is 
between these two extremes. 

The following values provide preliminary guidance 
for the choice of correlation distances: 

•  Sensitive (important):  
jd =1 to 3  

•  Insensitive (unimportant):  
jd = 4 to 6 

In principle, one could calculate appropriate values 
for these correlation distances analytically, using as 
inputs the results from sensitivity runs such as those 
documented in URS (2007) or the predictions of 

                                                                         
14 This correlation model implies that the random 
field is homogeneous and twice differentiable (in a 
second-order sense). 

15 The variance 2σ  cancels out in the results of 
section 4.1.2 and will be omitted in the material that 
follows. 

parametric models (e.g., Irish et al., 2007).  This 
calculation should take into account the distribution 
transformation described in Section 4.2.1.  This 
calculation of correlation distances has not been done 
to date, relying instead on choices made on the basis 
of judgment and on verification against reference 
JPM results, using an inexpensive numerical surge 
model. 

4.2.3 POSSIBLE REFINEMENTS IN 
DISTRIBUTION SHAPE AND 
CORRELATION STRUCTURE 

It is also possible to construct )(xf  as a mixed 
product of probability-distribution shapes (e.g., 
normal in some directions, uniform in others, 
exponential an possibly Weibull in others), chosen in 
such a way that these distribution shapes are closer to 
the distribution of the corresponding physical 
quantities.  This will require a somewhat different 
functional form for the autocovariance function in the 
non-normal directions, in order to permit analytical 
evaluation of the required integrals.  The effect of 
this refinement is anticipated to be better 
performance of the Bayesian quadrature for 
distribution shapes such as the Weibull, possibly 
eliminating the need for pre-slicing of the distribution 
of P∆ . 

4.2.4 OPTIMIZATION ALGORITHM 
As was indicated earlier, determination of n optimal 
sampling points in m dimensions constitutes an 
( nm × )-dimensional optimization problem.  We 
perform this optimization using an algorithm 
developed by Powell (2004), which does not require 
derivatives.  We choose the starting points at random.  
Convergence is fast for the number of dimensions 
and nodes considered in this paper. 

4.2.5 NEED FOR VALIDATION 
Because we make a number of assumptions regarding 
the functional form and parameters of the 
autocovariance function ),( yxk  of 

])([)( ηεη >+= xPxp m , it is important to validate the 
Quadrature JPM-OS scheme (i.e., the number of 
nodes and the correlation distances).   

In the URS/FEMA study, we validate the JPM-OS 
scheme by comparing the cumulative distributions of 
surge obtained using the JPM-OS scheme and a Base 
Case or reference JPM scheme (denoted JPM-Heavy 
in this paper and JPM Gold Standard in URS, 2007), 
using the SLOSH software to compute the surge in 
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both schemes.  These comparisons are shown later, in 
Section 4.2.6.2.   One can also perform this validation 
using a parametric surge model (e.g., Irish et al., 
2007). 

4.2.6 APPLICATION TO HURRICANES IN 
MISSISSIPPI 

 This section documents the application of the 
Quadrature JPM-OS approach to hurricanes affecting 
the Mississippi coast.  The example presented here 
considers hurricanes with P∆ > 45 mb (what we call 
the greater storms in URS, 2007 and Risk 
Engineering, 2007)16. 

4.2.6.1  SELECTED JPM-OS SCHEME  
This scheme (which we call the JPM-OS 6 scheme), 
is the scheme adopted for the final calculations, after 
experimenting with a number of other schemes 
having different numbers of nodes and somewhat 
different correlation distances.  Table 1 shows the 
various slices of the P∆ distribution, their 
probabilities, and the number of nodes used in the 
Bayesian-Quadrature discretization for each slice.  
Table 2 shows the correlation distances used in the 
Bayesian-Quadrature procedure.  These values were 
chosen based on the extensive sensitivity results 
presented in URS (2007), and then refined so that 
they preserve the marginal moments of the most 
important quantities. 

Table 1.  Discretization of  P∆  into Slices in JPM-
OS 6 Scheme for Greater Storms 

 Slice Cat .3 Cat. 4 Cat. 5
∆P range (mb) 45-70 70-95 95-135
Probability 0.657 0.261 0.082
#of points in 
Bayesian 
Quadrature

5 7 7

 

Table 2.  Correlation Distances in JPM-OS 6 Scheme 
for Greater Storms 

                                                 
16 The results shown here were obtained using the 
preliminary rates and probability-distribution 
parameters. These parameters slightly different from 
the final values documented in Section 3 of Risk 
Engineering (2007). 

DeltaP         (within 
slice) Rp Vf Heading

4 2.5 6 5

Correlation Distance (std normal units)

 

Figure 3 provides an illustration of the parameters of 
the resulting synthetic storms (for one landfall 
location location; i.e., prior to the distance-offsetting 
step in Section 4).  Each chart on the main diagonal 
shows the probability distribution of the 
corresponding quantity (in the form of a histogram), 
as represented in the JPM-OS 6 discretization.  Each 
off-diagonal scatter diagram shows how each pair of 
quantities (e.g., P∆  and Rp) are jointly distributed in 
the JPM-OS 6 scheme, with the areas of the circles 
being proportional to the associated annual rate.    

4.2.6.2 VALIDATION OF JPM-OS 
SCHEME 

As indicated earlier, we validate the JPM-OS 6 
scheme by comparing the cumulative distributions of 
surge obtained using the more efficient JPM-OS 6 
scheme and a reference-case JPM scheme (denoted 
JPM-Heavy), using the SLOSH software to compute 
the surge in both schemes.  This validation is feasible 
because SLOSH surge computer runs are relatively 
fast.  

The parameter values and annual rates for the JPM-
Heavy synthetic storms were defined as follows.  The 
values and probabilities for each parameter were 
determined using the one-dimensional quadrature 
approach described by Miller and Rice (1983), using 
different numbers of quadrature points according to 
the importance of the parameter.  For 

pR  (which 
depends on P∆ ), values were drawn from the 
conditional distribution of radius given P∆ ).  In 
addition, each of the 360 combinations of 

fVRpP −−−∆ θ  was assigned to multiple parallel 
tracks with a perpendicular spacing of 

pR , as 
described in step 3 of Section 4.   For each of the 
resulting 2,967 synthetic storms (i.e., for each 
combination of parameters and track), the storm 
event rate was obtained by multiplying the 
probability associated with each of the storm 
parameter values (i.e., 

)()()|()( ,, iifiipi pVpPRpPp θ××∆×∆ ) and then 
multiplying that result by the storm spacing (which is 
equal to 

pR ) times the annual rate of 45>∆P mb 
storms occurring in the Gulf coast area.  This rate 
was previously determined to be 3.02E-4 
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storms/km/yr.  Table 3 shows the quadrature nodes 
and associated probabilities for the various hurricane 
parameters.   

 

Figure 4 provides an illustration of the parameters of 
the resulting synthetic JPM-Heavy storms (for one 
landfall location), in a manner similar to Figure 3.  
Notice that some of the nodes receive very low 
weights (i.e., points that are barely visible) because 
they correspond to combinations of unlikely 
parameter values and it would be wasteful to spend 
significant computer resources evaluating the surge 
for each of these low-weight combinations.  This 
illustrates the inefficiencies that may occur when 

evaluating the JPM integral using conventional 
approaches. 

For the validation of JPM-OS 6, we calculate surges 
at 147 test points scattered throughout coastal 
Mississippi and adjacent portions of Louisiana using 
both the JPM-OS6 and JPM-Heavy synthetic storms, 
calculate the associated cumulative distributions of 
surge elevation for each storm set, and compare the 
associated 100-year surge.  Figure 6 compares the 
complementary cumulative distribution functions 
obtained with the JPM-OS6 and JPM-Heavy for site 
42, which is located along the shore at Biloxi, MS.  
The 100-year surge corresponds to an annual 
exceedence probability of 0.01, for which the 
difference between the two curves is less then 1 foot.  
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Figure 3.  Graphical representation of the JPM-OS 6 scheme for one landfall location.  The areas 
of the circles are proportional to the associated annual rate.  
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Note also the granularity of the cumulative 
distributions.  Fine granularity is generally an 
indication that the JPM-OS scheme is adequate in the 
corresponding portion of the curve.   

 

Figure 5 compares the 100-year results at the 147 test 
points.  Note that the error in the JPM-OS6 scheme is 
less than 1 foot for most points.  The few instances of 
large over-estimation (one of which is off-scale in the 
bottom panel of Figure 5) occur at inland or riverine 
points located more than 20 km away from the coast, 
near the edge of the of the 100-year inundation area.   
The instances of mild under-estimation seem to occur 
in areas where the coastline is complicated, such as 
Biloxi Bay near -88.8 longitude.    

This validation was performed prior to integration 
over ε .  The match between JPM-OS6 and JPM-
Heavy would be much closer if the comparison had 
been performed after integration over ε  because this 
step makes )(xp  smoother.  

4.3 OTHER MULTI-DIMENSIONAL 
QUADRATURE FORMULATIONS 

The simplest way to construct a multi-dimensional 
quadrature scheme is to apply a Classical quadrature 
to discretize each hurricane parameter and then 

generate all possible combinations of parameters.  
The probability assigned to each combination is the 
product of the probabilities for the corresponding 
discrete parameter values.  If the parameters are not 
independent, this is done in a sequential manner.  
This approach, which is called a “product-rule” 
quadrature, is precisely what we used above to 
construct the JPM-Heavy scheme. 

Unfortunately, this approach generates a very large 
number of parameter combinations as the number of 
dimensions increases.  Also, some of the 
combinations receive very low relative probabilities, 
suggesting that many these combinations do not 
warrant separate modeling runs.  Smolyka (1966) has 
developed a more efficient procedure to extend 
classical quadratures to multiple dimensions, but we 
have not investigated this approach.   

 

Table 3.  Parameter discretizations for JPM-Heavy Scheme 

P∆  (mb) 45.6 48.6 56.1 69.1 87.6 111.8 
Probability 0.0496 0.1661 0.2844 0.2844 0.1661 0.0496 

 

Rp (nmi) for P∆ =45.6 mb 6.94 13.43 24.38 44.28 85.71 
Rp (nmi) for P∆ =48.6 mb 6.63 12.84 23.32 42.34 81.96 
Rp (nmi) for P∆ =56.1 mb 5.99 11.59 21.05 38.23 74.00 
Rp (nmi) for P∆ =69.1 mb 5.16 10.00 18.15 32.96 63.80 
Rp (nmi) for P∆ =87.6 mb 4.36 8.44 15.33 27.84 53.88 
Rp (nmi) for P∆ =111.8 mb 3.67 7.10 12.89 23.41 45.31 
Probability 0.01 0.22 0.53 0.22 0.01 

 

Heading (θ ) -73.0 -32.7 7.3 49.4 
Probability 0.133 0.367 0.367 0.133 

 

Fwd. Velocity (m/s) 2.99 6.04 12.23 
Probability 0.1667 0.6666 0.1667 
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Hong (1998) developed an approach that requires 
2m+1 nodes to approximate an integral in m 
dimensions, while conserving moments up to order 3.  
Unfortunately, the weight for the central node tends 
to become negative as the number of dimensions 
increases.  Negative weights preclude interpretation 
of the nodes and their associated weights as a discrete 
probability distribution leading to a representative set 
of synthetic storms, are usually associated with 
higher error variances, and may lead to other 
difficulties such as negative values of cumulative 
distributions.   
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Figure 4.  Graphical representation of the JPM-Heavy scheme for one landfall location.    The 
areas of the circles are proportional to the associated annual rate. 
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Comparison of 100-yr Surge Elevations
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Figure 5.  Comparison of 100-year surge values at 147 test points for JPM-OS6 and JPM-Heavy 
schemes.  Positive errors indicate over-estimation by the JPM-OS6 scheme. 
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Figure 6.  Comparison of cumulative distribution functions for a site along the 
shore at Biloxi, MS. 
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5 THE RESPONSE-SURFACE JPM-OS 
APPROACH 

This approach takes advantage of the observation that 
the calculated surge mη is most sensitive to P∆ , 

pR , 
and distance (or track location).  Also, sensitivity to 
heading angle θ  and forward velocity 

fV is weaker 
and may be approximated as linear.  Furthermore, the 
variation of mη  as a function of these parameters is 
fairly smooth. These observations are confirmed by 
the sensitivity analyses documented in URS (2007) 
and by ADCIRC runs cited by Resio (2007). 

As a result of these observations, it is possible to 
perform surge calculations for a moderate number of 
synthetic storms—with carefully selected 
combinations of parameters--and then interpolate 
between the calculated surge elevation (in five 
dimensions) to obtain the surge elevation for any 
desired combination of parameters.  The 
computational cost for this interpolation is minimal.  
As a result, one can discretize the domain of the JPM 
integral very finely, even in five dimensions.      

The main difficulty in the response-surface JPM-OS 
scheme resides in the experimental design; i.e., 
selection of the parameters combinations for the 
synthetic storms, in a manner that provides enough 
points in the five-dimensional 

distance−−−−∆ fVpRP θ parameter space, without 
requiring a very large number of synthetic storms, 
and then implementing an accurate interpolation 
scheme that works reliably for all sites of interest.  
This selection process takes advantage of the weak 
sensitivity to heading angle θ  and forward velocity 

fV , concentrating on  P∆ , 
pR , and track location.  

The work performed by Resio (2007) for the New 
Orleans area provides an illustration of the selection 
of parameter combinations for the synthetic storms.  
This study considered 3 values of  P∆ , 3 values of 

PRp ∆| , 3 values of θ , 8 to 9 alternative tracks (9 for 
the base-case θ =0, 8 each for θ = ± 45 degrees; the 
spacing between tracks at landfall is  ~30 km), and 3 
values of forward velocity 

fV .  All parameter 
combinations would comprise a total of 675 synthetic 
storms.  This number was reduced to 152 by reducing 
the number of P∆ -

pR  combinations that are run for 

values of θ  and 
fV  other than the base case.  In 

particular, 9 P∆ -
pR  combinations are run per 

primary track (every other track is a primary track, 

spaced ~ 60 km at landfall) when both θ  and 
fV  are 

at their base case, 4 combinations are run when θ  
alone is changed to ± 45 degrees, 2 combinations are 
run when 

fV  alone is reduced to its low value, and 1 

combination is run when both θ  and 
fV  are at their 

alternative values.  Figure 7 provides an illustration 
of the parameters of the resulting synthetic storms 
(for the primary tracks only), using the same format 
as Figure 3.   A much smaller number of 
combinations are for the secondary tracks; these 
tracks provide more dense spatial sampling. 

Calculations proceed by interpolating first on P∆ -
pR  

space for each track and each combination of θ  and 

fV , then interpolating linearly over θ , and then 

finally over 
fV .  Further details are provided in Resio 

(2007) and in Irish and Resio (2007). 

 

6 SUMMARY AND DISCUSSION 
This paper has described the quadrature and 
response-surface JPM-OS approaches, with emphasis 
on the derivation, application, and verification of the 
former.  Experience from the URS/FEMA study for 
Mississippi and the USACE studies for Mississippi 
and Louisiana suggest that the two approaches are 
comparable in their accuracy and efficiency.  
Detailed comparisons between the two approaches 
will be documented in a forthcoming paper. 

 It may be possible, and it is certainly worthwhile, to 
improve the efficiency the numerical wave and surge 
calculations for probabilistic surge hazard studies by 
using somewhat more coarse computational grids and 
more efficient algorithms—while maintaining the 
necessary accuracy for studies of this kind.  
Nonetheless, the need for JPM-OS will remain 
because the hurricane parameterization for these 
studies will likely become more realistic and more 
complex, thereby increasing the number of 
dimensions in the JPM integral. 
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