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1. INTRODUCTION

We study a new type of oceanic rogue wave
which arises in the theory and modeling of directional
sea states in shallow water coastal zones. In contrast
to deep-water rogue waves, which are caused by the
Benjamin-Feir instability, the shallow water rogue
waves discussed herein do not arise from any
instability: Instead they occur because of nonlinear
interactions among cnoidal (Stokes) waves in the
nonlinear  directional  spectrum. The  basic
nonlinearity is that of a Mach stem, a phenomenon
identified by John Miles [Miles, 1977]. We show that
the appearance of the Mach stem (and its much less
nonlinear counter part) is a natural consequence of
the spectral nature of directionally spread waves in
shallow water. We give several examples of shallow
water rogue waves.

The formulation begins with that of the
Kadomtsev-Petviashvili (KP) equation [Novikov, et
al 1980; Ablowitz and Segur, 1981] and its nonlinear
spectral representation in terms of multi-dimensional
Fourier series [Belokolos, et al, 1994]. We then show
that the numerical spectral method for KP can be
rendered “almost linear” by this spectral approach.
This perspective provides a numerical model for KP
which is about three orders of magnitude faster than
the traditional leap-frog FFT spectral model. We refer
to the algorithm as “hyperfast numerical integration”
of the KP equation. We give an overview of this new
approach and discuss how to extend it to the order of
the Boussinesq equations. A number of directionally
spread numerical simulations of the method are
discussed. The appearance of the new type of rogue
wave is invariably found in these simulations and we
discuss their prediction using the new algorithms
given herein.

We first discuss (Section 2) the numerical
integration of linear partial differential wave
equations using the fast Fourier transform. We show
a novel way to program such a model which is then

quite useful in the conception of a new class of
nonlinear models (Section 3). Section 4 discusses the
KP equation and its numerical model. A simple
extension to a leading order Boussinesq equation is
also discussed. Implementation of the new nonlinear
model is discussed in Section 5 and some numerical
results are given in Section 6. Finally in Section 7 we
give some physical perspective about the formation
of shallow water rogue waves. Section 8 is a
summary and discussion of the results.

2. LINEAR NUMERICAL MODELING

In this Section we discuss the modeling of linear
partial differential equations. The procedure is based
upon the fast Fourier transform (FFT) algorithm. One
way to program this approach is shown in the flow
chart of Fig. 1. Since we are dealing with a linear
wave equation its solution is a linear superposition of
directionally spread sine waves. Each wave has
direction described by a wave number pair
(ky, ky):(km, [,) where the indices vary in the

usual waym, n=-N/2...—2,-1,0,1,2...N /2. Here

N is the number of points on each side of the (x, y)
domain, for example in typical numerical simulations
one might take N =128 or 512 points. From Fig. 1
we see that the inputs to the algorithm are the total
time of the simulation, 7, the wave number pair,
(ky, k,)=(k,,,1,), the linear Fourier amplitudes,

A

random), and the frequencies, ®,,, = @,,,(k,,..,)

. » the Fourier phases, ¢, (often chosen to be

(this is the linear dispersion relation). As seen from
the flow chart the Fourier transform for each value of
time, ¢, is then computed. A film of 500 or 1000
frames or time values is a typical output. In the last
box of Fig. 1 we take the FFT of the 1000 Fourier
transforms to get the wave surface elevation at the
1000 time points; then the film is made from these
1000 surfaces.
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Figure. 1. Simple flow chart of a numerical model for a linear partial differential equation with a well-defined

dispersion relation.



There are a number of important points to learn
from Fig. 1. There are two steps in the algorithm.
The first step, call it a preprocessor (red box of Fig.
1), computes the Fourier transform of the wave field
for all values of time. The second step, call it the
time evolution of the wave field, computes the wave
field for the values of time using the inverse FFT. So,
as we have seen above the preprocessor step is trivial
and therefore very fast. The time evolution step is
also very fast because one is computing, say, 1000
FFTs and on a modern desktop computer this step
takes only a few seconds at most. Note that the
second step could just as well be placed inside the
preprocessor do-loop. This is not the case for the
nonlinear problem as discussed below. Please note
that the algorithm in the flow chart of Fig. 1 has been
designed to be compatible with the nonlinear
problem discussed in the next section.

We see that a fast preprocessor step and ~1000
calls of the FFT are required for the linear problem.
Can we ever hope to solve nonlinear wave equations
at the speed of the linear problem? Probably not, but
the similarities between the two problems can be
made evident as discussed in the next section and the
speed savings can be quite dramatic with respect to
conventional FFT simulations.

3. NONLINEAR MODELING

The nonlinear modeling project that we are
discussing herein is quite new. A first attempt at
programming the algorithm was made early this year
in February and March. However, the algorithm
discussed herein has been completely redesigned and
reprogrammed in the last couple of months! And just
explaining what is being done is still quite a
challenge. The algorithm, remarkably, has an overall
structure very similar to the linear approach discussed
above (see Fig. 2). Basically this means that the first
step consists of a preprocessor part which determines
the nonlinear time evolution of the linear Fourier
spectrum, i.e. it computes the linear Fourier spectrum
with nonlinear interactions among the components at
some large number (say N ~1000) of desired time
steps (once again to make a movie for studying the
nonlinear wave behavior). The second step is to take
the inverse FFT of the time varying Fourier
transforms. Both steps parallel the linear problem as
in Fig. 1. However, for the nonlinear problem the
preprocessor is much more complex and time
consuming. Additionally the mathematics (soliton
theory, Riemann theta functions and algebraic
geometry) is not that ordinarily studied by physical
oceanographers and this may be an impediment that
could test the patience of those who might want to

apply the method. As we shall see however, the speed
gains are quite dramatic, i.e. two or three orders of
magnitude faster than the direct numerical integration
of nonlinear wave equations by the FFT.

As with the linear problem the nonlinear method
proposed here for integrable nonlinear partial
differential equations is also exact, i.e. there is no
degradation of the numerical accuracy with
increasing time. This is because time is a parameter
in the theory and one is simply evaluating the
solution at each value of time. As mentioned above
the linear algorithm could be easily modified to place
the inverse FFTs inside the preprocessor itself. On the
contrary the nonlinear algorithm cannot be so easily
modified. It is for this reason that we give Figs. 1 and
2 in the form shown, i.e. with the pre- and post-
processing maintained separately.

Let us now briefly return to Fig. 2. The
preprocessor is unique for each integrable wave
equation as discussed in detail in a later section.
Furthermore, for each nonintegrable equation a sub-
processor must be added as shown in the blue box of
Fig. 2. This detail is also discussed below.

Finally it is worthwhile noting that the numerical
integration of nonlinear wave equations depends
primarily upon the preprocessor and its design and
implementation. ~ The  development of the
preprocessor is therefore the most active part of
present research connected with the method proposed
herein.

4. NONLINEAR INTEGRABLE MODEL
WAVE EQUATIONS

There exist large classes of nonlinear partial
differential wave equations that are completely
solvable by the inverse scattering transform
(Ablowitz and Segur [1981]; Whitham [1974]). One
of the most important of these equations is the
nonlinear Kortweg-deVries (KdV) equation in one
space ( X) and one time () (1+1) dimensions:

Ny +coNy +Omnn, + ﬁnxxx =0 (1)

Here n(x,t) is the wave amplitude as a function of
space and time. The constants
- - — B2 76 b
c,=+gh, a=3c,/2h and B=c,h"/6; h is the
water depth and g is the acceleration of gravity. The

solution to the KdV equation is given by the
following expression:

(xt)—zilnﬂ(xtlBk(oq))
D=y e TR

are given by

@)

where A=0o /6. The generalized Fourier series,
0(x,t 1B, k,®,0) , has the form:
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Figure. 2. Simple flow chart of the numerical model for integrable and nonintegrable nonlinear partial
differential equations with a well-defined dispersion relation.
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where X, =k, x—w,t+¢,. The inverse problem

associated with (2) (not discussed in detail herein)
allows one to determine the period or Riemann

matrix, B wave numbers, &k, , frequencies, @

mn > n»

and phases, ¢, , appropriate to solving the Cauchy

problem for KdV, i.e. given the spatial variation of
the solutions at ¢ =0, namely 71(x,0), compute for

all time the solution, 1(x,?).

It is important to recognize that (2), for
small amplitude waves, gives the usual ordinary
Fourier transform as a solution to the linearized KdV
equation: Ny +¢oNy+ PN =0.  Thus  the

generalized Fourier expression (2), (3), in the small
amplitude limit, is just the ordinary Fourier approach
commonly used for everyday data analysis problems.
However, the main advantage of (2), (3) is that when
the waves are not small in amplitude one is able to
fully generalize to a nonlinear set of basis functions
(cnoidal waves, see for example [Weigel, 1964],
[Mei, 1983]) and to include nonlinear interactions
among these nonlinear modes.

The Kadomtsev and Petviashvili (KP) equation,
KdV generalized to the case of directional spreading,
is given by

T+ €My + 0N, + Bl +7 951y =0 (4)

Where n(x,y,t) is the wave amplitude as a function
of the two spatial variables, x, y and time, 7. The
constants c,, o, B are given after (1) and y=¢, /2.

The KP equation (4) is a natural two-space-dimension
extension of the KdV equation (1). The periodic KP
solutions include directional spreading in the wave
field:

2

nix,y,t)= %Bax_zln 6(x,y,t1B,K,Q, @) 5)

Here the generalized Fourier series has the same form
as above, but the phase has the two dimensional
expression:

X(x,y,)=Kx+Ly—Qt - ® (6)

The spatial term Kx has been joined by the lateral
spatial term Ly, which allows wave spreading to be

taken into account. The KP equation is the first
nonlinear step toward a directional sea state; KP is
however limited to small directional spreading.
Improving the directional spreading characteristics of
the KP equation requires the addition of physically
important corrections to the equation as discussed
below.

5. IMPLEMENTATION OF THE NEW
NONLINEAR MODEL

We now discuss certain aspects of the nonlinear
preprocessor in the new approach for obtaining
numerical solutions to nonlinear wave equations. See
Osborne [1995, 2000, 2002] for useful references.
First note that one begins with the Riemann theta
functions and makes a transformation. The simplest
type of transformation is given by equation (5). In the
numerical results discussed below we implement (5).
Second we will use the following result, i.e. that the
theta function (3) can be reduced to an ordinary linear
Fourier series with time varying coefficients:

e(x,y,t) = 2 2 emn (t)eikmx+ilny+i¢mn A

Mm=—o0 f=—o0

Here the time varying coefficients 6, (¢) can be

written analytically in terms of the Riemann matrix,
phases and frequencies. Note that the above
expression is rather simple, i.e. it is just an ordinary
linear Fourier series, which in numerical applications

has N’ terms. The theta function itself is quite
different in behavior for it has an exponential number

of terms ~10N, which can be a huge number.
Consider for example a case where N =30, i.e. 30
cnoidal waves in the spectrum (see below for an
example of a cnoidal wave). Then the number of
terms in the theta function is far greater then the
number of grains of sand on the earth, the number of
galaxies in the universe, greater than Avogardro’s
number and greater then the number of seconds since
the big bang! Clearly the preprocessor has got to be

pretty efficient to reduce 10N (~ 1030) to N2 (900)!

We call the mathematical process to reduce the theta
function onto the ordinary linear Fourier modes a

“collapse”, i.e. the 10V modes of the theta function

are collapsed onto the N 2 modes of the linear
Fourier transform (for each value of time 7). Indeed
we generally say that we collapse the theta function
onto the linear Fourier modes. This process requires



some knowledge of the algebraic geometry of theta
functions [Belokolos, et al, 1994] that we do not go
into here.

Another way to describe what we do in the
preprocessor is to note that the theta function, which

effectively has ~ 10" phase space dimensions, for all
but a set of zero measure has only a polynomial
number of active phase space dimensions, i.e.

N%+aN? +bN* +¢N° +... The proof of this
statement is lengthy and will be documented in the
future. We are therefore able to reduce the theta
function from a calculation which is exponential in

the number of modes (lON) to one which is
polynomial in the number of  modes

(N2 +aN> +bN* + N’ + ...) for computations of
physical interest. The preprocessor algorithm must
therefore be able to find this polynomial number of
phase space dimensions or must have a priori
knowledge of what they are in order to collapse the
theta function onto the linear Fourier modes. We are
investigating a number of approaches at the present
time to do this and now have four that are useful for
the collapsing process. Only one of these methods
(clearly the best up to now) is not exponential. Fig. 2
shows a flow chart of some of the significant steps in
the integration of nonlinear wave equations. In order
to illustrate the polynomial behavior for the number

of theta function modes ( N + aN? +bN? + cN* + )
we show in Fig. 3 a typical example which works
quite well for a fifth order polynomial. Thus roughly
30,000 active theta function degrees of freedom are
required to do the simulations herein where the
Riemann matrix was taken to be 25x25. For the
particular limits taken in the theta function we had a
total of 5 trillion degrees of freedom! The reduction
from 5 trillion to 30 thousand active modes provides
the basis for the fast nature of the present algorithm.
The assessment of sparseness and the determination
of the actual active degrees of freedom in the
Riemann theta function is one of the most
fundamental of the preprocessor tasks.

6. NUMERICAL RESULTS

We now consider some of the numerical results. To
be concrete we have chosen the KP equation, i.e.
directionally spread waves in shallow water that are
distributed over relatively small angles. An example
of a directionally spread wave train is given in Fig. 4.
The significant wave height is 1.5 m and the water
depth is 8 m. There are 24 cnoidal waves in the
spectrum with a maximum modulus of 0.84 (these are
strongly nonlinear waves, but they are still less
nonlinear than solitons which have a modulus of 1).

This latter cnoidal wave of modulus 0.84 is shown in
Fig. 5 and its corresponding profile is shown in Fig.
6. In the latter figures we see that the wave is really
Stokes-like in its shape, a result of the nonlinearities
in the KP equation.

We now turn to the modified or extended KP
equation, which we refer to as xKP. This equation is
found from the KP equation by extending it an
additional two orders of approximation beyond the
KP equation and for many purposes xKP behaves
essentially like the Boussinesq equation. To add this
extended feature to the model in Fig. 2 we must of
course add a fime varying Riemann matrix and
phases. To this end the model of Fig. 2 must be
modified by adding the dynamics of the Riemann
matrix and phases to the blue box in the figure. This
step is quite mathematical and will therefore be
documented in detail at a later time.
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Figure. 3. Number of active degrees of freedom as a
function of the number of nonlinear modes
(dimension of Riemann theta function), for a typical
simulation with a 256x256 spatial grid for 500 time
points.

The numerical results for the Boussinesq model
are shown in Figs. 7 through 11. One of the major
new results which have come from these simulations
is the appearance of a new kind of rogue wave which
occurs only in shallow water wave dynamics and is
not related to the Benjamin-Feir instability. Shallow
water rogue waves of the type observed in the
simulations occur due to strong nonlinear interactions
between two or more cnoidal waves and in their
simplest form are a mildly nonlinear precursor to the
Mach stem.



The other major result is the small amount of

computer time required for these simulations. The
waves are significantly nonlinear with the ratio of
significant wave height to water depth given by
H,/h=15m/8m=0.1875 and the maximum wave
height to depth is H,,, /h=3.4m/8m =0.425 . The
integration domain is 500 m by 500 m and has 128 x
128 spatial bins. A total of 500 time values were
computed to make a film. The total cpu time was 19
sec on a Macintosh G5 running at 2.5 GHz (this result
is considerably faster than previous versions of the
code). This compares to a split-step FFT code which
took 11 hours to compute the same problem on the
same computer.

Thus the preprocessor multi-dimensional Fourier
model which we have developed is over 2000 times
faster than the split-step FFT code. For a number of
reasons which we will not mention here, we
anticipate additional improvement in the preprocessor

Figure. 4. Typical wave field in simulation of KP
equation. The significant wave height is 1.5 m and
the water depth is 8 m.

Figure. 5. A single cnoidal wave basis function is
effectively a Stokes wave which is up-down
asymmetric, having a narrow peak and a broad
trough.
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Figure. 6. A single cnoidal wave basis function (see
Fig. 5) showing the narrow peak and broad trough.
The wave modulus (a number between 0 and 1
indicating nonlinearity) is m = 0.84 .

Figure. 7. A large rogue wave of height 3.4 m in the
Boussinesq (xKP) simulation. The significant wave
height is 1.5 m. Note the presence of the rogue waves
whose maxima are shown in red.
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time, which for the present run was 4 sec. The
remaining 15 sec was the iteration of the computation
of the 500 points in time for FFTs of 128 x 128 points
(this last step is equivalent to the linear model).

Figure. 9. Another large rogue wave of height 3.3 m
in the Boussinesq (xXKP) simulation. The significant
wave height is 1.5 m.
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Figure. 10. Space series of shallow water rogue wave
of Fig. 7. The height is 3.3 m and the wave length is
120 m.

I U
[ :\\\\\\\g’,
%m,,,m,,,m,;»,'p,;:'z',';u,"u',’,k&&k&x.A ,.

AN
}%’{“H{’}%‘ / il ”‘J’“’W"l}m {W/ lfl,’l’l,"lj," III

Ay

o

l

-1.00

0
s 8B 12
5

0 - —
— 8
100 112 125125 112 190 X

1225 38 50 4 7‘5’;8
Y

Figure. 11. Another view of a shallow water rogue
wave as seen from the mean water level.

Figs. 7 and 8 show a single frame from the above
xKP run. A rogue wave of height 3.4 m is seen on the
right hand side of the graph. The height 3.4 m divided
by the significant wave height of 1.5 m gives a rogue
wave height of 2.27 Hg. Figs. 9 and 10 show
another rogue wave from another frame in the film.
Finally in Fig. 11 we see another rogue wave, this
time from the perspective of an observation at the
mean water level.

7. THE PHYSICS OF SHALLOW WATER
ROGUE WAVES

The physics of shallow water rogue waves is
most well-known in terms of soliton interactions and
the creation of the Mach stem. This is illustrated in
Figs. 12 and 13. Fig. 12 is a case with moderate
nonlinearity while Fig. 13 has the strongly nonlinear
case for two interacting soliton trains.

We now turn to other cases which are
sufficiently complex (the number of nonlinear modes
have been reduced to 15, i.e. the Riemann matrix is
15 x 15) and which have less directional spreading
than the examples given above. Figs. 14 and 15 show
the sea surface and the contours for such a case. The
larges wave is easily seen to be at the junction of a
Mach stem.
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Figure. 12. Surface elevation due to the interaction of
two cnoidal waves which results in a large wave
amplitude caused by the Mach stem effect.

Another similar case is shown in Figs. 16 and
17. Note the crossed lines, indicating the presence of
a Mach stem, in the contour graph Fig. 17. However
in this case another large wave, at the bottom of Fig.
17, can also be categorized as a rogue wave, but no
Mach stem is observed! Clearly the characterization



of shallow water rogue waves is not yet well
understood.
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Figure. 13. Surface elevation due to the interaction of
two cnoidal waves (so large in amplitude that they are
effectively two soliton trains) resulting in a large
wave at the intersections of the soliton trains which is
caused by the Mach stem effect.
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Figure. 14. Surface elevation of a large wave caused
by the Mach stem effect.

To shed some light on this last observation we
note the single rogue wave, clearly in the absence of
any kind of Mach stem effect, shown in Figs. 18-20.
This simulation was conducted with a Riemann
matrix of 15 x 15 with a spatial grid of 256 x 256.
The initial Riemann phases were set to zero and the
wave train was advanced in time to capture the
occurrence of the rogue wave. The procedure is
similar to that used in wave tanks to construct a large
amplitude wave train by preselecting the phases, not
as random numbers, but with specific values in order

to elicit the occurrence of a large amplitude wave
somewhere in the center of the tank. This approach is
seen to work equally well for the nonlinear problem.
However, in our case one must preselect the Riemann
phases to have appropriate values.
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Figure. 15. Contours of Fig. 14. One can actually see
the Mach stem surrounding the largest wave as
shown by the crossed lines.
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Figure. 16. Surface elevation of a large wave caused
by the Mach stem effect.

8. SUMMARY AND DISCUSSION

We have developed a new approach for the
numerical modeling of nonlinear partial differential
wave equations. The method is based upon the
inverse scattering transform for periodic/quasi-
periodic boundary conditions. In this formulation one

-10-



uses the Riemann theta function (a kind of multi-
dimensional Fourier series) to construct the nonlinear
dynamics of the waves. We have found an approach
which allows us to treat the numerics in a way which
is quite similar to the linear problem, but with the
addition of a preprocessor step which is based upon a
fast numerical computation of the theta functions and
on their reduction to ordinary time-dependent Fourier
series. The results of our numerical algorithm are
about three orders of magnitude faster than the split-
step FFT algorithm.
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Figure. 17. Contours of Fig. 16. One can actually see
the Mach stem surrounding the largest wave as
shown by the crossed lines.

250 0

Figure. 18. Another type of rogue wave identified in
the simulations. No Mach stem is evident.

How accurate is our algorithm? In principle it is
exact. This is because it is simply an algorithm which
evaluates the solution at particular values of the time

t. We do not have to numerically integrate the motion
in any way. Since ¢ is a parameter one can rapidly
and exactly compute the solution at any desired time.
We have not evaluated the round off errors in our
approach, but they should be roughly the same as
with the standard Fourier transform evaluation.
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Figure. 19. Contours of rogue wave of Fig. 18. No
Mach stem is evident.
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Figure. 20. Profile of rogue wave of Figs. 18, 19.

The model will require considerable work in the
next year or two to make it “user friendly.” At
present one must specify the Riemann matrix and
phases, whereas we are all more familiar with and
prefer to use the standard Pierson-Moskowitz and
JONSWAP power spectra. In addition to an interface
providing spectra of this type as input (including the
computation of the Riemann matrix from the
standard input oceanographic spectra) one must also
offer the possibility of integrating the motion out to

-11-



any order and in particular to provide deep water
capability. Additionally we plan to add arbitrary
bathymetry and coast lines, and wind forcing and
dissipation to the model.
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