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1. INTRODUCTION

Still water level (SWL) is the level that the sea surface (at a given point and time) would assume in the
absence of wind waves. SWLs are influenced by astronomical and meteorological effects. The
estimation of extremes of SWL, required in metocean studies and used in the design of coastal
structures, is not straightforward. One of the main problems it faces is the inhomogeneity, sparsity and
scarcity of the data. Moreover, it is not always clear which modelling approach is most appropriate for
estimating the extremes.

The following approaches are currently used:

1. Extreme value analysis of the SWLs.

2. Estimation of extreme water levels from the convolution of the extreme value distribution of
the surge (or that of a non-synchronous difference between SWL and tide) with the empirical
distribution of tidal levels. Compared to 1., this is thought to make better use of the data, and
of the sometimes complete tidal information.

3. Estimation of extreme surge levels from extreme weather conditions (winds and atmospheric
pressures) and computation of pessimistic or conservative SWL estimates by adding the
Highest Astronomical Tide to them.

The purpose of this study is to assess approaches 1. and 2. and to provide guidelines as to which
should be used in a given situation. In each of them, two different extreme value analysis methods will
be considered: the peaks-over-threshold and annual maxima methods. Using the results of our analyses
with Approach 2., we shall also provide indications about the tidal level that should be used in
Approach 3.

Besides a decision about which approach to take, a decision must also be made about which
offset/surge to be used in Approach 2; this depends on the location of the data.

In this study we have been fortunate to have had a long-term timeseries of still water level
measurements made available to us by the Dutch Ministry of Transport, Public Works and Water
Management. They are the measurements of the gauge located at Hoek van Holland, The Netherlands
(see Figure 1 in Section 3.1) and extend from 1887 to 2006. This long and well documented dataset is
ideal for a study as that proposed here since it allows for reliable statistics and conclusions to be drawn
from the data.
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2. DESCRIPTION OF THE STATISTICAL METHODOLOGY USED

2.1 Introduction

In the framework of approaches 1. and 2. outlined in the Introduction, different paths of analysis can
be followed. For example, in both cases three different methods of extreme value analysis may be
used: the annual maxima, the peaks-over-threshold or the r-largest method. The second and the third
methods both make use of more observations than the first, but since the peaks-over-threshold method
is generally thought to be somewhat superior we shall not consider the r-largest method in this study
(see Coles, 2001). Subsections 2.2 and 2.3 describe briefly the annual maxima and peaks-over-
threshold methods.

For a given method of extreme value analysis, Approach 2 consists of

1. separating the astronomic tide from the water level observations,
2. analysing the astronomic tide and the residual (storm surge) separately,
3. computing the empirical distribution of the astronomic tide,
4. carrying out a univariate extreme value analysis of the storm surge data, and
5. computing the convolution of the empirical distribution of the astronomic tide with the

extreme value distribution estimated from the storm surge data.

As stated in the Introduction, in this study we will work with data for which the tide and the residual
signals have already been separated. Harmonic analysis of the still water levels is a problem in itself
and will not be considered here.

Section 2.4 briefly describes the computation of the convolution. The estimation of model parameters
and the computation of confidence intervals are based on the same methods in all the extreme value
analyses; they are described in Section 2.5.

2.2 Annual Maxima/GEV method

In order to explain the basic ideas, let us define 1max , ,n nM X X , where 1 2,X X  is a sequence
of independent random variables having a common distribution function F. In its simplest form, the
extremal types theorem states the following: If there exist sequences of constants 0n  and n

such that P ( )n n nM z G z  as n , where G is a non-degenerate cumulative
distribution function, then G must be a generalized extreme value (GEV) distribution, which is given
by

1

( ) exp 1 zG z ,

where z take values in three different sets according to the sign of : z  if 0  (the domain
of z has a lower limit), z  if 0  (the domain of z has an upper limit), and z  if

0 .



In other words, if the distribution function of (a normalization of) the maximum value in a random
sample of size n converges to a distribution function as n tends to infinity, then that distribution
function must be a GEV distribution. Moreover, this and other results of extreme value theory hold
true even under general dependence conditions (Coles, 2001).

The  GEV  parameters  ,   and   are  called  the  location,  scale,  and  shape  parameters  and  satisfy
, 0  and . For 0  the GEV is the Gumbel distribution, for 0  it is

the Fréchet distribution, and for 0  it is the Weibull distribution. For 0  the tail of the GEV is
“heavier” (i.e., decreases more slowly) than the tail of the Gumbel distribution, and for 0  it is
“lighter” (decreases more quickly and actually reaches 0) than that of the Gumbel distribution. The
GEV is said to have a type II tail for 0  and  a  type  III  tail  for 0 .  The  tail  of  the  Gumbel
distribution is called a type I tail. See the book of Coles (2001) for more information.

The extremal types theorem gives rise to the annual maxima (AM) method of modelling extremes, in
which the GEV distribution is fitted to a sample of block maxima.

One of the main applications of extreme value analysis is the estimation of the once per m year (1/m
yr) return value. The 1/m yr return value based on the AM method/GEV distribution, mz , is given by

-
11 log 1 , for 0
m

1log log 1 , for 0.
m

mz

2.2 Peaks-over-threshold/GPD method

The sample sizes of annual maxima data are usually small, so that model estimates, especially return
values, have large uncertainties. This has motivated the development of more sophisticated methods
that enable the modelling of more data than just block maxima. These methods are based on two well-
known characterizations of extreme value distributions: one based on exceedances of a threshold, and
the other based on the behaviour of the r largest, for small values of r, observations within a block.

The approach based on the exceedances of  a  high threshold,  hereafter  referred to as  the POT (Peaks
Over Threshold) method, consists of fitting the generalized Pareto distribution (GPD) to the peaks of
‘clustered’ excesses over a threshold, the excesses being the observations in a cluster (of successive
exceedances) minus the threshold, and calculating return values by taking into account the rate of
occurrence of clusters (see Pickands, 1971 and 1975, and Davidson and Smith, 1990). Under very
general conditions this procedure ensures that the data can have only three possible, albeit asymptotic,
distributions (the three forms of the GPD) and, moreover, that observations belonging to different peak
clusters are (approximately) independent. In the POT method, the peak excesses over a high threshold
u of a time series are assumed to occur in time according to a Poisson process with rate u  and to be
independently distributed with a GPD, whose distribution function is given by

1

( ) 1 1u
yF y ,



where 0 y , 0  and .  The two parameters  of  the GPD are called scale  ( ) and
shape ( ) parameters. For 0  the GPD is the exponential distribution with mean , for 0  it is
the Pareto distribution, and for 0  it is a special case of the beta distribution. As for the GEV, the
GPD is  said to have a  type II  tail  for 0 and a type III  tail  for 0 . The tail of the exponential
distribution is a type I tail.

The 1/m yr return value based on a POT/GPD analysis, zm, is given by

u

u

{ ( m) 1}, for 0

log( m), for 0.
m

u
z

u

Just as block maxima have the GEV as their approximate distribution, the threshold excesses have a
corresponding approximate distribution within the GPD. Moreover, the parameters of the GPD of
threshold excesses are uniquely determined by those of the associated GEV distribution of block
maxima.  In  particular,  the  shape  parameter  is  the  same,  and  the  scale  parameters  of  the  two
distributions are related by u .

The choice of threshold (analogous to the choice of block size in the block maxima approach)
represents a trade off between bias and variance: too low a threshold is likely to violate the asymptotic
basis of the model, leading to bias; too high a threshold will generate fewer excesses with which to
estimate the model, leading to high variance.

An important property of the POT/GPD approach is the threshold stability property: if a GPD is a
reasonable model for excesses of a threshold 0u , then for a higher threshold u  a  GPD should  also
apply; the two GPD’s have identical shape parameter and their scale parameters are related by

0 0u u u u , which can be reparameterized as

*
u u

Consequently, if u0 is a valid threshold for excesses to follow the GPD then estimates of both * and ,
hence the quantile estimate itself, should remain nearly constant above u0. This property of the GPD
can be used to find the minimum threshold at which a GPD model applies to the data.

2.4 Convolution of astronomical tides and extreme surge levels

Extreme  value  analyses  based  on  the  SWL alone  are  considered  by  some  to  be  wasteful  of  data.  In
order to take advantage of the sometimes fully available tidal information, extreme values of SWLs
can also be estimated from the convolution of the distribution of the residual (the synchronous or not
offset/surge) extremes and the empirical distribution of the tidal levels. More precisely, given that the
SWL is the sum of the residual and the tide and that these variables can, under certain conditions, be
assumed independent, another approach for obtaining the extreme value distribution of the SWL is to
estimate the distribution function of ‘large values’ of SWL by the convolution integral

( ) ( ) ( )rF z G z x f x dx



where Gr is the distribution function of ‘large values’ of the residual (either the GPD or the GEV) and f
is the (in principle fully known) density function of the tide levels.

If Gr is  the GPD, the 1/m yr  return value of  SWL can be computed from F by finding zm such that
1 ( ) 1/( )F z m , where  has been defined in Section 2.2. If Gr is the GEV, the 1/m yr return value is
computed by solving the same equation with  replaced by 1.

2.5 Parameter estimation and confidence intervals

There are several methods available for the estimation of the parameters of extreme value
distributions. Most of them, for instance the methods of moments and of probability weighted
moments, give explicit expressions for the parameter estimates. The maximum likelihood (ML)
method tends to be the preferred estimation method since it is quite general and more flexible than
other methods, especially when the number of parameters is increased as for instance when extending
the extreme value approach to account for non-stationarity.

There are big uncertainties with estimates pertaining to extreme values which need to be quantified.
When obtaining ML estimates, the variances of the estimates can be obtained from the expected
information matrix or from the observed information matrix. An alternative, and usually more
accurate, method is the profile likelihood method (Coles, 2001, p. 57), which is based on the deviance
function and yields asymmetric confidence intervals. Other alternatives are based on bootstrap
procedures with adjustments as suggested by Coles and Simiu (2003). According to a recent study on
the coverage rate of confidence intervals of extreme value estimates based on various methods, WL
(2007), the adjusted percentile bootstrap method turns out to produce the best confidence intervals
from of the point of view of coverage rates. For this reason this will be the method employed in our
analyses.

In the case of return values computed from the convolution integral, the bootstrap is applied by
resampling from the sample of the residuals only (as the tide is regarded as known).

3. DESCRIPTION OF THE ANALYSIS OF THE DATA

3.1 Introduction

In compliance with the Flood Defences Act of The Netherlands, the primary coastal structures must be
checked every five years for the required level of protection on the basis of the Hydraulic Boundary
Conditions and the Safety Assessment Regulation. These Hydraulic Boundary Conditions must be
derived anew every five years and established by the Minister of Transport, Public Works and Water
Management. Extreme still water levels are one of the components of these hydraulic boundary
conditions. They are defined using the rich dataset of still water level measurements along the
Netherlands coast, which is maintained due to the high safety standard of the country that are the result
of the tragic 1953 flooding of The Netherlands on which more than 18 hundred people died. Some of
the available timeseries contain more than 100 years of measurements and the corresponding tidal
levels are also available. For this study we have been provided with the still water level and high tide
data from the Hoek van Holland measuring location; see Figure 1.

The measurements go from 1887 to 2006. This extensive dataset is ideal for a study as the one
proposed here since it allows for reliable statistics and conclusions to be drawn from the data. The
measurements up to 1985 have been extensively analysed by Dillingh et al. (1993). This makes the
dataset even more appealing since most of the peculiarities of the data are known.



In many countries, the design criteria of coastal structures require that they should withstand the 1/100
years return values of the loads. Given that the data chosen for this study are from The Netherlands,
where the design criteria for sea dikes vary from 1/2000 years to 1/10000 years, we shall be estimating
the 1/100, 1/1000 and 1/10000 return values of SWLs. Even with such a long dataset, the estimation of
the 1/10000 years return value is somewhat ambitious.

Figure 1 – Google earth aerial view of the Hoek van Holland tide gauge location.

3.2 Pre-processing of the data

 Choice of the surge variable

In shallow waters, the wind set-up can be rather high and cause a significant increase of the
propagation velocity of the tidal wave. Furthermore, the currents caused by the wind will also
influence the propagation of the tidal wave. Consequently, the instantaneous offset between the SWL
and the tidal levels will also include effects of the interaction between the tidal wave and the
atmospheric factors and cannot always be considered independent from the co-occurring tidal height.
This phenomenon is relevant in the North Sea, where the tidal range is rather high and shallow regions
are common. And indeed, as Dillingh et al (1993) report, it is relevant for the Hoek van Holland data
considered here. For this reason, Dillingh et al (1993) have decided to statistically analyse the skew
High Water offset (the offset between the SWL peak and the tidal high water, independently of a time
difference between the two) instead of the vertical, synchronous offset; see Figure 2. Consequently, the
skew High Water offset will also be the surge variable considered in this study.

 Choice of the population

The data consist of the high SWL (the SWL peak at high tide), the corresponding high tide, and the
high water offset from August 1887 until December 2006. From now on we refer to these data as



SWL, tide and surge, respectively. The tide in Hoek van Holland is semi-diurnal with an average time
interval of about 12h and 25min between high waters, which implies that the data set contains on
average two observations per day.

Figure 2 –Schematic representation of high water offset and synchronous offset.

In order to carry out the extreme value analysis the data should be homogeneous; seasonal and other
variations should therefore be filtered out. Following the study of Dillingh et al. (1993), where the
homogeneity of the data was thoroughly assessed, we shall only consider data from the long winter
season of October to March. The data to be used in extreme value analyses should also be
independent. Dillingh et al. (1993) report that the average duration of North Sea surge storms of about
2.41 days. Therefore, in this study, SWL peaks (the POT sample) above a threshold are collected from
the original time series in such a way that they can be modelled as independent observations. This is,
as usual, done by a process of declustering in which only the peak (highest) observations in clusters of
successive exceedances of a specified threshold are retained and, of these, only those which in some
sense  are  sufficiently  far  apart  (so  that  they  belong  to  more  or  less  ‘independent  storms’)  are
considered. Specifically, cluster maxima at a distance of less than 60 hours apart were treated as
belonging to the same cluster (storm/extreme event).

 Removal of trends

As already noticed by Dillingh et al. (1993), the series of yearly means of the high SWLs (October to
March, 1887 until 2006) shows a trend due to sea level variations caused by global warming, dredging,
coastal works and/or morphological changes. This trend, which is of about 0.26 cm/year, was removed
from the data, adjusting the SWLs to the levels of the 2006 long winter season (October 2005 until
March 2006).

3.3 Analysis of the results

 POT/GPD analysis of the SWL data

We have used the threshold stability property mentioned in Section 2 to choose the most appropriate
threshold for selecting a sample of peak excesses and fitting the GPD to it. More precisely, we have
looked for threshold values around which the estimate of the shape parameter and * seem to be stable



before becoming rather variable due to reduction of the sample size. Figure 3 shows the estimates of
the shape parameter, of * and of the 1/10000 years return value as functions of the threshold,
obtained with the SWL (October to March 1887/88 – 2005/06) data. The threshold that we have
chosen is marked by a vertical line. The return value plot of the corresponding GPD fit is shown in
Figure 4 and the model parameter estimates are presented in Table 1.

Figure 3 – Variation of the estimates of , * and 1/10000 years SWL return values of the GPD model with the threshold
used to collect the SWL POT sample.

Figure 4 – Return value plot of the GPD model fitted to the SWL data obtained with the ML method (solid black line) and
associated 95% confidence intervals (dashed black lines). The POT data are represented by the asterisks.



The return value plot suggests that the GPD model is appropriate for the data. Noteworthy is the
position of the highest peak in the data, which corresponds to the SWL reached in the tragic storm of 1
February 1953. According to the plot, the return period of this event is much longer than the 119-year
period covered by the data.

As can be seen in Table 3, the estimate of the shape parameter is close to zero, which suggests that the
data have a type I tail.

We should note that at the beginning of our analysis we have followed Dillingh et al. (1993) in
selecting only SWL peaks for which the skew offset was at least 30cm. However, this constraint
proved to be unnecessary as it does not affect the estimates.

Sample size u ˆ ˆ
393 205 -0.01 (-0.13, 0.09) 26 (23, 30)

Table 1  Parameter estimates and associated 95% confidence intervals of the GPD model fitted to the SWL POT data.

 AM/GEV analysis of the SWL data

Figure 5 shows the return value plot of the GEV fit to the ‘annual’ (long winter season) maxima of the
SWL data. Table 2 gives the corresponding parameter estimates. The return value estimates for the
1/100, 1/1000 and 1/10000 years are given in Figure 5. Comparing these with the estimates obtained
with the GPD model (Figure 4), one can conclude that they are compatible and rather close. From
Table  1  and  Table  2  one  can  also  see  that  the  estimates  of  the  shape  parameter  are  rather  similar,
supporting the validity of both models. As was to be expected (due to the difference in sample sizes),
the confidence intervals provided by the GEV model are wider than those of the GPD.

Figure  5  –  Return  value  plot  of  the  GEV  fitted  to  the  SWL  data  obtained  with  the  ML  method  (solid  black  line)  and
associated 95% confidence intervals (dashed black lines). The AM data are represented by the asterisks.



Sample size ˆ ˆ ˆ
119 0.01 (-0.14, 0.16) 26 (22, 30) 235 (230, 241)

Table 2  Parameter estimates and associated 95% confidence intervals of the GEV model fitted to the SWL AM data.

 Convolution of astronomical tides and peak surge heights

As in the POT/GPD analysis of the SWL data, we have used the threshold stability property to choose
the most appropriate threshold for selecting a sample of surge peak excesses and fitting the GPD to it.
Figure 6 shows the estimates of the shape parameter, of * and of the 1/10000 return value as
functions of the threshold obtained with the surge (October to March 1887/88 – 2005/06) data. The
thresholds that we have chosen are marked by vertical lines. The return value plot of the corresponding
GPD fit is presented in Figure 7, and the model parameter estimates in Table 3.

From Table 3 and Table 1, we see that the estimate of the shape parameter of the GPD is the same with
surge and SWL data.. Comparing the GPD fits of the surge and SWL data (figures 4 and 7), one can
say that the fit of the surge data is a bit poorer. As before, the highest peak of the surge data
corresponds to the 1953 storm, which is again associated with a return period longer than that spanned
by the measurements.

Figure 6 – Variation of the estimates of , * and 1/10000 years surge return values of the GPD model with the threshold
used to collect the surge POT sample.

Figure 8 shows the return value plot obtained from the convolution of the empirical distribution of the
astronomical tide and the GPD fit just described. The fit seems appropriate and the return value
estimates are compatible with those obtained in Approach 1.



Figure 7 – Return value plot of the GPD fitted to the surge data obtained with the ML method (solid black line) and
associated 95% confidence intervals (dashed black lines). The POT data are represented by the asterisks.

Sample size u ˆ ˆ
506 81 -0.01 (-0.11, 0.08) 27 (24, 31)

Table 3  Parameter estimates and associated 95% confidence intervals of the GPD model fitted to the surge POT data.

Figure 8 – Return value plot of the convolution of the astronomical tide and the surge levels (solid black line) and associated
95% confidence intervals (dashed black lines). The corresponding SWL data are represented by the asterisks.



 Convolution of astronomical tide and AM surge heights

Figure 9 shows the return value plot of the GEV fit to the annual maxima of the surge data and the
surge 1/100, 1/1000 and 1/10000 years return value estimates. Table 4 gives the corresponding
parameter estimates. Comparing these with the estimates obtained with the GPD model (Figure 7), one
can conclude that they are compatible and rather close. From Table 3 and Table 4 one can also see that
the estimates of the shape parameter are rather similar.

Figure 9 – Return value plot of the GEV fitted to the surge data obtained with the ML method (solid black line) and
associated 95% confidence intervals (dashed black line). The surge data are represented by the asterisks.

Sample size ˆ ˆ ˆ
119 -0.03 (-0.17, 0.09) 28 (24, 33) 118 (113, 123)

Table 4  Parameter estimates and associated 95% confidence intervals of the GEV model fitted to the surge AM data.

Figure 10 shows the return value plot obtained from the convolution of the empirical distribution of
the astronomical  tide and the GEV fit  just  described.  The fit  seems appropriate  and the return value
estimates are compatible with those obtained from the SWL data using the other models.



Figure 10 – Return value plot of the convolution of the astronomical tide and the AM surge levels (solid black line) and
associated 95% confidence intervals (dashed black lines). The corresponding SWL AM data are represented by the
asterisks.

4. DISCUSSION AND RECOMMENDATIONS

The goal of this study is to assess approaches 1. and 2. to estimating extremes of SWLs, and to provide
guidelines as to which should be used in a given situation. The approaches have been applied to the
Hoek van Holland data. We shall now discuss the results obtained and give recommendations.

To facilitate the discussion, the results have been gathered in Figure 11 and in Tables 5 and 6.

Figure 11 shows the return value plots of the various estimates and associated 95% confidence
intervals. The figure shows a striking agreement between the return value point estimates provided by
the different methods. The compatibility between the estimates can be further seen in the relative
differences between the SWL return value estimates obtained from the different analyses and those of
the POT/GPD analysis  of  the SWL given in Table 5.  Differences between estimates  are  always less
than 5%. Given the amplitude of the 95% confidence intervals associated with the estimates (cf. Table
6), these differences do not appear significant.

It can thus be concluded that, given a large enough and reliable dataset, the estimates of return values
from the different approaches and variants are compatible.

From the amplitude of the 95% confidence intervals in relation to the associated point estimate, given
as a percentage in Table 6, the following conclusions can be drawn:

o The wider confidence intervals are those for estimates using the AM/GEV model. This is to be
expected and should be more noticeable with datasets smaller than the one considered here.

o The use of Approach 2. does not result in shorter confidence intervals. This goes against the
idea that not using the known tidal information is data wasteful. It could be explained from the



fact that the uncertainty in the estimates is due to the rare extreme events and not the well
determined tide.

o As expected, the relative amplitude of the confidence intervals increases with the return
period. This sets limitations to the actual use in practice of the ‘more extreme’ return value
estimates computed from a dataset with a given length.

Figure 11 – Return value plot constructed with the results from all the analyses, including 95% confidence bands as dashed
lines. The SWL data are represented by the asterisks and the surge data by the circles.

Return period Convolution
Residual POT/GPD

SWL
AM/GPD

Convolution
Residual AM/GPD

1.50 1.25 1.37
1.54 2.83 0.95

1/100 year
1/1000 years

1/10000 years 1.48 4.63 0.07

Table 5  Relative differences between the SWL return values estimates obtained from the different analyses and those of the
POT/GPD analysis of the SWL. The values are percentages of the POT/GPD SWL return value point estimates.

For the return periods longer than 10 years, the return value estimates of the convolution are equal to
those of the associated surge analysis plus a constant. Both in the POT and GPD models of Approach
2. this constant is 118 cm. The average of the high tide data for the period October to March 1887/88 –
2005/06 is 111 cm, and the maximum is 157 cm. The Mean High Water Spring at this site is 130cm.
This indicates that adding the Highest Astronomical Tide to the water levels associated with the
extreme weather conditions of Approach 3. is a too conservative procedure. A value between Mean
High Water and Mean High Water Spring should be used.



Return period SWL (cm) rel. amp. of c.i. (%)

SWL
POT/GPD

  1/100 years
 1/1000 years
1/10000 years

354 (323, 388)
411 (350, 489)
467 (372, 614)

19
34
52

Residual
POT/GPD

  1/100 years
 1/1000 years
1/10000 years

241 (210, 279)
299 (241, 381)
355 (265, 505)

29
47
67

Convolution
Residual POT/GPD

  1/100 years
 1/1000 years
1/10000 years

359 (339, 409)
417 (378, 526)
473 (409, 673)

19
35
56

SWL
AM/GEV

  1/100 years
 1/1000 years
1/10000 years

358 (326, 400)
422 (356, 533)
488 (378, 722)

21
42
70

Residual
AM/GEV

  1/100 years
 1/1000 years
1/10000 years

241 (206, 280)
296 (233, 385)
348 (251, 514)

31
51
75

Convolution
Residual AM/GEV

  1/100 years
 1/1000 years
1/10000 years

358 (335, 418)
414 (371, 561)
467 (396, 759)

23
46
78

Table 5  Return value estimates, associated 95% confidence intervals and relative amplitude of the confidence intervals.

The following recommendations arise from this study:

o The POT/GPD approach is generally preferable to the AM/GEV approach since the estimates
of the latter have greater variability, even with long datasets.

o Approach 2. does not seem to be superior, in terms of reduction of uncertainty of estimates, to
Approach 1. It is therefore preferable to use Approach 1. since this is simpler and/or does not
require the determination of the tidal signal. In the case of the POT/GPD approach, this of
course assumes that the threshold has been taken high enough so as to exclude peaks with no
surge component.

o The choice of the offset to be used in Approach 2. should take into consideration the
characteristics of the basin under study. For the North Sea, the basin of the example used here,
the instantaneous offset between the astronomical tide and the SWL should not be used since
the two may be correlated. For other basins, such as for instance the Mediterranean Sea, where
water depths are rather high and the wind set-up less important, the instantaneous offset can in
principle be used.

o In Approach 3., the tidal level that should be added to the water level associated with extreme
weather conditions should be somewhere between Mean High Waters and Mean High Water
Spring.
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